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A Spherical Bound 
for the Sherrington-Kirkpatrick Model 

F. Comets 

Abstract. — We prove existence of a phase transition for the Sherrington-Kirkpatrick model 
at ¡3 = 1 : making use of the domination by the spherical model, we derive a bound for the 
pressure as well as for the ground state energy. 

1. Introduction. The Sherrington-Kirkpatrick (SK) model consists of a set of N 
binary spins a* € { - 1 , - f l } with Hamiltonian 

HN(a) = 
1 

VN 
l<i<j<N 

Jij<Ti<Tj 
1 

J2N l<i<N 

JiiQ2i (i.i) 

where the couplings J*, are independent Gaussian random variables with mean zero 
and unit variance. Compared with the original definition [SK] we have added the 
second summand in (1.1) which does not depend on a in the binary case and does 
not change the results below. The partition function at inverse temperature ¡3 and 
the pressure of the model are the random variables 

ZSK 
N Eaexp{-I3HN((T)} , PW 

1 

N 
log ZSK 

N 
(1-2) 

depending on the Jij's; in (1.2) we have used the notation Ea = 2 - " '<r€i-l,+l>" 
to denote the average over the spin configurations, and we keep the symbol E for 
expectations over the couplings Jij. 

Among the few mathematical results for this model it is known that, at high 
temperature, the "quenched" and "annealed" behaviors coincide: 

<nSK 

PN N-KX 

02 

4 
lim 

N->oo 

1 

N 
log E 7SK 6N (1.3) 

Convergence in probability and in Lp, 1 < p < oo, follows from the fluctuations results 
of [ALR] or [CN], and convergence with probability one follows using in addition the 
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concentration property proved in [T] from general considerations, or in [BGP] more 
directly. On the other hand, the convergence (1.3) cannot hold for large /3 since the 
entropy per spin is at most log 2 for binary spins. 

In this note we show that the convergence in (1.3) only happens when /3 < 1 and 
hence phase transition takes place at 0C = 1. For this we prove below a (weak) bound 
for the limit points of which is a self-averaging quantity [PS]. This bound implies 
another one for the ground state energy. 

These bounds reflect the domination of the SK model by the spherical model, where 
the uniform probability measure Ea on the iV-dimensional hypercube { - 1 , 4 - 1 } ^ is 
replaced with the uniform probability measure Ev on the sphere 

{veRN M 2 

N 

¿=1 
vi N} 

The partition function and pressure of this second model 

ZS 
N 

E^exp -ßHNm 
PS 
N 

ì 

N 
log 7s (1.4) 

depend only on the eigenvalues of the quadratic form HN. Spherical models, intro­
duced by Berlin and Kac [BK], are completely solvable in many instances. They are 
commonly analysed via the method of steepest descent, or more simply via the mean-
spherical approximation (i.e., as Gaussian models where the spherical constraint is 
satisfied in the mean). The asymptotics of (1.4) are studied in [KTJ] and in [Th], but 
for completeness of this note, we give below a quick derivation of the bound. 

Acknowledgements: I thank Olivier Catoni and Leonid Pastur for stimulating 
conversations and useful remarks about these bounds. 

2. Spherical bound and consequences. 

The NxN symmetric matrix M, with coefficients Mij l 
2VN 

Fii if i < j and 
Mii = 1 

SEES 
Pii has a.s. simple eignevalues Ai < Ä2 < . . . < AJV with normalized 

eigenvectors 0i = (<ßhj)j<N <t>N Since the distribution of M is invariant under 
orthogonal transformations, the diagonal matrix A of the eigenvalues Ai, . . . ,Aw is 
independent of the orthogonal matrix <j> = (0 i , . . . , 0jv), and we may clearly choose the 
frame <j> such that it is uniformly distributed on the set O(N) of orthogonal matrices; 
in particular one has for any positive measurable function F 

E { F ( M ) | A } = E 0 F ( 0 A ^ ) , P-a.s. (2.1) 

with Etf, the expectation in <j> uniformly distributed on 0(N). This implies that the 
spherical model dominates the SK model: more precisely, for any fixed binary spin a, 
the distribution of the scalar products {cr.<t>%)i<N under EO is the uniform measure 
on the sphere, and then 

nZ%K\A} 7S P-a.s. (2-2) 
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On the other hand, by Wigner's semicircle law, the empirical measure of eigenvalues 
converges weakly [G] 

1 

N 

N 

K+1 
saK 

JV-+00 
w(X)d\ E 

7T 
( l - A 2 ) 

2 
t]-1.1 (A) dX P-a.s. (2.3.a) 

and moreover the maximal and minimal eigenvalues do not deviate [BY] 

lim 
N->oo 

A AT = • lim 
N>oo 

Ai = l . P-a.s. (2.3.6) 

Let us now state our main result which implies non-analyticity of the pressure 
at f3 = 1. 

Proposition: a) For all ¡3 > 1, 

lim sup 
N-+00 

PSK 
N 

<(3 1 
2 

log/? 3 
4 P-a.s. 

b) In particular. lim sup 
N-KX> 

p 8 / < / J 2 /4 P-a.s. when ¡3 > 1, though the limit (1.3) holds 
when0<3<l. 

In fact the bound in a) is equal to the limit of [Th]. For /3 > 1 but close to 1, the 
bound is larger than the Sherrington-Kirkpatrick solution for the pressure of the SK 
model, and then it does not prove absence of self-averaging of the Edwards-Anderson 
order parameter [PS] for these values of /?. 

Proof. We will prove that 

lim sup 
N>oo 

PSK 
N 

< inf 
»0 

PSK 
N 

1 
2 

1 
2 log2( s-BX)w(X)d\} P-a.s. (2.4) 

Then, noticing that the function between braces in (2.4) is convex in 5, and using the 
identities 

(5-/3A)" 1 w(X) dX = 2/?- 2 [s - (s 2 - /? 2 )*] (2.5.a) 

riog(*-/?A)w(A)dA = /3~2s [ 5 - ( 5 2 - / 3 2 ) i ] + log ( [5 -h (5 2 - /3 2 ) i ] /2) - l /2 (2.5.b) 

valid for s > /3, it can be checked that the bound in (2.4) is achieved for ¡3 < 1 at 
the saddle-point s = ( /? 2 +l) /2 and is equal to /3 2/4, but corresponds to s = /3 when 
/3 > 1 and is equal to 0 - l 

2 
log/3-

3 
4" 

We now prove (2.4). Let s > so > 0; and assume that (3XN < 8Q. Then, 

aN:= 
RN 

exp B£tA£-s¨£|2 d( = exp N 
2 log 27T 1 

2 logdet2(3l-/3A)} (2.6) 

For c G ]0, If, let VNte be the Euclidean volume of {CeRN,\tf/Ne[i-e,l}} The 

uniform probability measure on this domain makes the vectors n = VN(£i/|£|) 
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and \(\2/N independent, the first one with distribution and the second one with 
mean m^, € € [1—c, 1]. Therefore, we have 

aN> exp 
ICI2 

N 
[ßrfAri-sN} BiV-i|C|2€[l-6,l] dÇvJ€.vNil 

> vNi€.Eflext>mNie{ßrlthrl-sN} 

from Jensen inequality for E^. Since s > so > /3A#, the last term in braces is negative, 
the function m Er)e^m{0rfKr]-sN} is decreasing and 

a,N > vN,e Ev exp {ßrfhr)-sN} = VNt€ exp{-iV$} 7S 

Combining (2.6) and the estimate 

VN.e = 7 r ^ / 2 r ( 1 + i V / 2 ) " ' 1 
NN/2 1 — exp 

N 
2N log (!-«)] 

= exp 
N 
2N 

(log27r + l + 0 £ ( l ) } 

with some (deterministic) sequence 0((1) going to zero, we obtain finally for 0\N < SQ 

Pat <S l 
2 

1 

2N 

N 

i=l 
log2(s-ß\k) + Oe(l) (2.7) 

Letting 6 = 5 - l 
2 

1 
2 f log 2(s—/3X) w(X) dX we define the following set AN of couplings 

AN = {XN < solP,Xi > -2,S 1 
2 

1  
2N 1 

2N log2(s-ßXk)<b+c} We have 

E ZSK 
N *AN 

E1ANE Z%K\A 

= E1An ZS 
N 

(from (2.2)) 

<expiV(6+2e) for large N (from (2.7)), 

PI ZSK 
N 

> b+3e}nAN < exp — Ne 

and the Borel-Cantelli lemma implies that P(limsup 
N-+OC 

PSK 
N 

> b+3e} H AN) = 0. On 

the other hand we know from (2.3.a and b) that P(liminfAw) = 1, 
N-+CO 

therefore 

PHimsup 
N>oo 

PSK 
N 

> fc+3e}) = 0 for all e > 0. We have finally lim sup 
N-yoo 

PSK 
N 

< b P-a.s., 

which shows (2.4). 

The statement b) is an obvious consequence of a), except for limAj p 8 / 0 2 / 4 if 

0 = 1: but this follows from convexity of PSK 
N 

in 0, from (1.3) and a) for a = 1. See 
also [Gu] for the case ß = 1. 
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