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Condenser Potentials 

J. Glover, M. Rao 

Abstract. — Under appropriate hypotheses, the potential theory of a transient Markov 
process can be recovered from the condenser charges. 

A central object in both the theory of Markov processes and in potential theory 
is the cone of excessive or superharmonic functions. This cone provides a critical 
link between the two subjects, and many important and useful theorems in Markov 
processes aim at a deeper understanding of the cone and its properties. Various 
subsets of this cone have been studied, also. For example, the collection of hitting 
probabilities proves to contain enough information to recover the potential theory of 
the process [5,6]. In this article, we suggest that another important link between 
Markov processes and potential theory is forged by the collection of condenser 
potentials and the associated collection of condenser charges. Condenser potentials 
receive little attention even in comprehensive tomes on potential theory. The 
condenser theorem for classical potential theory in Rd is the following and has a 
standard extension in the theory of Dirichlet spaces [9]. 

T h e o r e m . Let K and L be open sets with disjoint closures K and L, and assume 
that K is compact Then there exists a potential p of a signed measure \x such that: 

(i)0<p<l a.e. on Rd. 
(ii) p = 0 a.e. on L and p = 1 a.e. on K. 
(Hi) The support of ^ is contained in K and the support of \T is contained in L. 

The potential p is in fact unique in Rd and uniqueness holds also in Dirichlet spaces. 
We are aware of only one probabilistic study of condenser potentials, that being the 

1977 note by K. L. Chung and R. K. Getoor [4]. They "guessed" that the condenser 
potential is simply the probability starting at x that Brownian motion hits K before 
it hits L. In their article, they deal with a Hunt process on a locally compact state 
space satisfying the duality assumptions in [1]. Throughout this article, we adopt the 
same assumptions: X = {U^T,TuXu6uPx) is a Hunt process on a locally compact 
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state space E satisfying the duality assumptions in Section VI-1 of [1]. In particular, 
u(x, y) will denote the potential density and [/7 will denote the potential of a measure 
7. For K and L Borel sets in E with disjoint closures, we define p(x) = PX[TK < Ti] 
to be the condenser potential of the pair (K,L). Define pn = (PKPL^PKI- Chung 
and Getoor's final result may be stated as follows. 

T h e o r e m . If ^2npn converges, then p = Up, is the condenser potential of (K,L), 
where the measure \i is obtained as follows: 

(i) /i+ is the capacitary measure PK of K relative to (X,TL), the process X killed 
when it hits L. 

(ii) pT = PLPK is the co-balayage onto L of px-
Chung and Getoor also investigate several conditions guaranteeing £)n pn converges. 

In this article, we investigate what role the condenser potential p and the condenser 
measure p can play in potential theory, now that they have interesting probabilistic 
interpretations. We begin by characterizing the condenser potential in the symmetric 
case in a style akin to Hunt's balayage theorem. Our real interest in this article 
lies in studying the non-symmetric case, so we present this result in passing to help 
the reader with intuitionjibout condenser potentials. Let K denote the collection of 
probability measures on K, and let C denote the collection of positive measures on 
L. Recall that the mutual energy of two measures A and p is defined by 

< A , p > = / / u{x,y)X(dx)p(dy) 
J E J E 

It is by now a standard exercise to extend this to be an inner product on the space 
of signed measures 7r with <C |TT|, |7r| ^>< 00. This space is a pre-Hilbert space. We 
shall denote the norm of TT by ||7r|j. 

T h e o r e m . Assume that u(x,y) = u(y,x). Assume also that every potential I /7 ofji 
measure 7 is lower semicontinuous on E and continuous off the support 0 / 7 . Let K 
and L be compact and disjoint The unique measure 7 — v which minimizes 

J * f . l l 7 - i ' l l 

is a constant times the condenser measure p,. 

Proof We show first that the inf above is achieved by measures p G K and Pip G £ . 
Choose (pn) C K and (7rn) C C such that the sequence \\pn - 7rn|| converges to 
e = inf7€;ci/e£ | |7~^ll- Then, by reducing to a subsequence if necessary, pn converges 
weakly to a measure p € K and irn converges weakly to a measure 7r G C. A 
standard Dirichlet space computation yields \\p - 7r|| < liminfn_>oo \\Pn - ^n|| = e. 
But ||p — 7r|| > ||p - PLP\\ since PLP is the unique measure in C minimizing the 
distance between p and C. Thus e = ||p - PLP\\ with p G /C and PLP G £ . 

Now let £ G K and /? G C be any pair of measures such that ||{ - /} | | = e. Note 
that /? = PL£ since PL£ is the unique measure in C minimizing the distance between 
f and £. Take another measure A G K of finite energy, and let t > 0. Then 

ll*(A - 0 + * - fll = ||(1 - *)* + *A - /311 > IK - fll 
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Thus 

*2||A-É||2 + 2 * « A - £ , £ - / ? > > 0 

for every t > 0, and we conclude that 

That is, 

« A £ , £ - / 3 » > 0 

J UK /9)d(A-O>0 

so 

2||A-É||2 + 2*«A-£,£-/?>>02||A-É||2 + 2*«A-£,£-/?>>0 

(the first equality holding since U(£ - /?) = 0 on L). Since À G £ is arbitrary, 
— /3) > e2 on AT, except perhaps on a set of capacity zero. Taking À = f, we get 

2||A-É||2 + 2*«A-£,£-/?>>0mliLML 

so U(Z - /3) = e2 a.e. £ on Since [/£ < U0 + e2 a.e. f, we have [/£ < [//3 + e2 on 
£ by the maximum principle. To summarize, U(£ — /3) < e2, 17(£ — /3) = e2 a.e. f on 
if, /3 = PL£ and [/(£ - /3) = 0 on L. By uniqueness of condenser potentials, £ = p 
and /3 = PL/O. • 

In [7], Glover, Hansen and Rao observed that the potential theory of a symmetric 
process can be reconstructed from the capacities. This result can also be found in 
Choquet [3], at least in the case where points are polar. In the case where the process 
hits points, Glover, Hansen and Rao proved the following formula, which will be useful 
for the purposes of comparison later. 

T h e o r e m . Assume that u(z,w) = u(w, z) and Pz(T{zy < oo) > 0 for all z and w in 
E. Fix x and y in E, let a be the capacity of {x}, let b be the capacity of {y}, and let 
c be the capacity of the set Then 

' - ^ ' - ' ( ; + i - 5 ) 
u(x,y) = 

If a = 6, then 

c 

u(x,y) = \ - \ 
c a 

Symmetry is needed in the theorem above: one cannot recover the potential theory 
of a nonsymmetric process from the capacities, in general. However, one can recover 
neatly the potential theory of a nonsymmetric process from the condenser charges, as 
follows. 
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Definition. Let Up be the condenser potential of the sets (K,L). The condenser 
charge associated with the sets (K,L) is defined to be 11(E), and will be denoted by 
c(K,L). 

Under the hypotheses of Chung and Getoor's theorem, c(K, L) > 0, and, for fixed 
L, the map K —• c(K, L) is a capacity which is alternating of order infinity, since 
it is simply the capacity of the process X killed the first time it hits L. We will 
need some notation to state the next result. For x ^ 3/, let cxy = c({x},{y}) and 
Cyx = c({y}, {x}), let a = c({x},0) and b = c({i/},0). 

T h e o r e m . Assume that Pz(T{zy = 0) = 1 for all z € E. Then u{x,x) = a " 1 . 
• If Cxy = 0, then u(y,x) = b"1 and u(x,y) = 0. 
•IfcyX = 0, then u(x>y) = a"1 and u(y,x) = 0. 
• If cxy ^ 0 and cyx / 0, then 

u(y,x) 
1 

KLM 
Cxy 

acyx 

u(x,y) 1 
Cxy 

Cyx 
bCxy 

Proof uxx = a S so Max can be determined from condenser charges. If x ^ 3/, let 
= ^{*},{v}> = MW) a^d My = Then 

(1) Uxx№x UxyfJ»y — 1 
2||A-É||2 + 2*«A-£,£-/?>>0 

If the determinant D =Uxx^yy ^xy^yx= 0, then ttxx = ttyy = uxy = iiyx since the 
maximum principle guarantees uxx > uxyi uyy > uyxi uxx > uyx^ and uyy > uxy. 
But this would imply that the restriction of u to {x, 3/} x {x, y} is not the potential 
density of a transient two-state Markov chain, which would be a contradiction. So 
D > 0. Then /Xx = %y/-D and \iv = -uyx/D, so cXy = (%y - uyx)/D. Similarly, 
Cyx = (ux* - Uxy)/D. If Cxy = 0, then uyx = %y = 6"1 and cyx = 6. By Chung and 
Getoor's result [4], cyx = b- bP{x}(y,{x}), and we conclude that P{x}(y,') = 0. By 
time reversal, it follows that Px(Ty < 00) = 0 which implies u(x,y) = 0. 

If cXy ^ 0 and Cyx ^ 0, then (uyy — UyX)/cXy = (ttx* ~~ v>Xy)/cyX. Solving for wXy 
and substituting into equation (1), we obtain a quadratic in uyx with solution 

Uyx — 

1 + 
Cyg 

ft 

Cxy 

a 
r CXy 

. a 
1 Cyx y 

b 

2 
4cyx 

'1 
HG 

CXy 
ab 

ZCVX 

1 + 
C«x 
FGF 

Cgy 

a 
1-

/ Cxii Cyx 

a 6 
2cyx 
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