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Large deviations and martingales 

for a 

typed branching diffusion, 1 

S. C. Harris, D. Williams 

Abstrac t . — We study a certain family of typed branching diffusions where the type of 
each particle moves as an Ornstein-Uhlenbeck process and binary branching occurs at a rate 
quadratic in the particle's type. We calculate the 'left-most' particle speed for the branching 
process explicitly, aided by close connections with harmonic oscillator theory. The behaviour 
of the system changes markedly below a certain critical temperature parameter. 

In the high-temperature regime, the study of various 'additive' martingales and their use 
in a change of measure method provides the proof of the almost sure speed of spread of the 
particle system. 

Also, we briefly mention how to use the martingale results of the branching diffusion model 
in representations of travelling-wave solutions for the associated reaction-diffusion equation. 

1. Introduction 
Our aim is to produce a series of papers on a certain family of typed branching 
diffusions each with rich structure. The present paper introduces the simplest (binary-
branching) model and (except for a 'sneak preview' of the critical-temperature phase 
in the Section 9) studies this model only in the high-temperature phase in which there 
is a high degree of ergodicity. Here, many standard methods are applicable, though 
we have been able to carry them through only because the model's close relation to 
the harmonic oscillator allows explicit calculations; the first calculations also have a 
long history in probability going back to Cameron and Martin - see Sections 5.13-5.15 
of Ito and McKean (1965). Some of the calculations necessary for our approach are 
rather complicated; and these are only sketched here - see Harris (1995) and Harris 
and Williams (1995) for more details. We deal with the substantive points of rigour, 
but skip some details of rigour to keep the text to an appropriate length. 

We begin by recalling how certain 'linear' expectations for the branching process 
may be calculated by considering a one-particle system, and we derive certain 
martingale properties. We then study in some detail the large-deviation heuristics 
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for the problem, emphasizing the role of Legendre transformations. Next, we use a 
method of Neveu to establish uniform-integrability properties of certain martingales; 
this requires calculation of an expectation which reflects the non-linearity of the 
system, and we are saved only because Meyer's opérateur carré du champ behaves 
well. By exploiting a change-of-measure technique ('exponential tilting' in the 
exotic/quixotic terminology of statisticians), we prove the results suggested by large-
deviation theory. The martingale methods have the significant bonus that they imply 
existence of monotone travelling waves associated with the model. In the present 
context, it may not be easy to establish the existence of these waves by analysis. 
Neveu's method of proving lack of uniform integrability of certain martingales will be 
important for proving uniqueness in some cases, non-existence in others, for monotone 
travelling waves. This idea is developed in full for a simpler problem in Champneys, 
Harris, Toland, Warren and Williams (1995); in the present context, it requires 
difficult a priori estimates. We also refer the reader to the Champneys et al paper 
for a list of references to which the present paper is equally indebted. 

Further study of the high-temperature regime is made in Harris (1995), and will be 
continued in other joint papers. The changes of measure have some bizarre features 
which we wish to discuss further, bringing in important ideas from Chauvin and 
Rouault (1988, 1990). The long-term behaviour of the 'Gibbs-Boltzmann' measure 
J\(t) which assigns mass J\(t,k) as at (6.1) to the point (Xk(t),Yk(t)) is the 
most fascinating aspect of the high-temperature phase. Note that the fundamental 
martingale Z^(t) gives the 'partition function'. The study of the long-term behaviour 
of J\ is closely related to that of the 'excited-state' martingales for our system. 

A major challenge for the binary-branching model is the low-temperature regime 
(9 < 8r) in which all of the methods used here fail: the expected number of particles 
in a region blows up, though the number of particles remains almost surely finite. 
Other models present other challenges. 

2. The Branching Model 

We consider a typed branching diffusion where, for time t > 0, 

N(t) is the number of particles alive, 
Xk(t) in R is the spatial position of the fcth-born particle, 
Yk(t) in R is the 'type' of the fcth-born particle, 

(N(t);Xi(t),...,XN(t)] Yi(t),...,>N(i)) is the current state of the particle system. 

The type moves on the real line as an Ornstem-Uhlenbeck process associated with the 
differential operator (generator) 

x(t,k){ KL 
JKH -y 

д 
ду 
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where 0 is a positive real parameter considered as the temperature of the system. The 
spatial motion of a particle of type y is a driftless Brownian motion with variance 

A(y) := ay2, where a > 0. 

The breeding of a type y particle occurs at a rate 

R(y) := ry2 + p, where r, p > 0, 

and we have one child born at these times (binary splitting). A child inherits its 
parent's current type and (spatial) position then moves off independently of all others. 
Particles live forever (once born!). 

Let Px,y and Ex*y represent probability and expectation when the process starts 
from (JV;X,Y) = (l;x;2/). 

For starting point (iV;X; Y) = (1;0;0), we have 

F°>°(N(t) = 11 aiYxis): s < t)) = exp 
to 

i?(Fi(5) )d5 

and on the set {N(t) > k} we have 

(2.1) V0fi(xk(t) € FI (,{N(3), Y(s) :s < t)) 

'F 

2TT 

KJ 

^0 
A(Yk(s)) ds 

GHG 
exp 

x2 
2f'A(Yk(s))ds 

) dx, 

where Yk{s) is the type of the unique 'ancestor' alive at s of the fc-th particle alive at 
time t. 

We are going to consider r, p, a as fixed, and look at the effects of changing the 
temperature 0. One of our main concerns is: what is 'the velocity of the leftmost 
particle'; to be precise, what is the value of 

Vel := lim L(t)/t 
t—•oo 

(we prove that the almost sure limit does exist), where 

Lit) := inf 
l<fc<AT(t) 

FG 

The temperature controls the balance of competition between the ergodic mixing 
of the Ornstein-Uhlenbeck process (which increases with 0) and the large breeding 
rate and large diffusion coefficient for the X-motion away from the type-origin. This 
is reflected in the answer 

Vel = -c(0) 
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where 

(2.2) m 2 = 
2a (r + p + 

2(2r + p)2> 
0 - 8 r 

+00 

for 9 > 8r, 

for 9 < Sr. 

When 0 is very large, the system may be approximated by a 'mean field' model in 
which A(Y) is replaced by its mean a and R(Y) by its mean r+p under the (standard 
normal) invariant law of the type process. 

In all but the last section of this paper, 
we assume that 9 > Sr. 

The challenging low-temperature cases and many other things are left to other 
occasions. 

3. Calculations using the One-Particle System 
Let (£, T)) be a process behaving like a single particle's space and type motions in the 
branching model described above. Thus, f is a Brownian motion controlled by an 
Ornstein-Uhlenbeck process 77, and (£, rj) has formal generator W, where 

CHF)(x,y) 1 
2 Чу) 

d2F 
dx2 ' 

-(QeF){x,y): 1 
2 ETi 

d2F 
'dx2 

в 
2 

fd2F 
dy2 y-

dF 
dy. 

Of course, 77 is an autonomous Markov process with generator Q$ and with (standard 
normal) invariant density 

ф(у) := (2тг)-*ехр(-*2/2). 

For functions hi,ti2 on R, we define the Ь2(ф) inner product: 

(/ii,/i2>0 := 
JR 

hi{y)h2(y)<l>{y)dy. 

The following principle is used repeatedly. 
(3.1) LEMMA: 'Prom One to Many'. For any non-negative Borel function f on 

R x R, we have 

LKL 
N(t) 

k=l 

f(Xk(t)yYk(t)) = E * , Y exp 
BFR 

/0 
R(rj3)ds FGHVG 

This principle is often combined with a change-of-measure formula for Ornstein-
Uhlenbeck processes. We use OU(0, ¡1) to represent an Ornstein-Uhlenbeck process 
with variance 9 and drift parameter /i, thus with generator § - liy-§z-
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