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The Function exp [-p Trace y/2Â\ 

as a Laplace Transform on Symmetric Matrices 

G. Letac 

Abstract. — This note shows that if p > 0 and if S+ is the set of symmetric positive definite 
matrices, then the function on S+ defined by A H-* exp (— Trace pV2A) is the Laplace transform 
of a non positive function concentrated on S+ if n > 2. This function is explicitely computed 
for n = 2. This computation is generalized to a Lorentz cone. The link of this question with 
the inverse Gaussian distributions in probability theory is also discussed, as well as the general 
problem of considering det L(A) as a Laplace transform on symmetric matrices when L(X) is 
a Laplace transform on the real line. 

§1. Introduction. For p > 0, define the stable probability distribution of order 1/2 
on R+ : 

lip(dx) = P 
'2TT 

x~ % exp i 
P2 

2x> 
%>,+oo)(#) dx (1.1) 

Then its Laplace transform, evaluated at A > 0, is : 

poo 

'0 
exp (-Ax) fip(dx) = exp (-pv2A) (1.2) 

(See e.g. Feller 1970, p. 436 (3.4)). 

Probability distributions (1.1) can be imbedded in the three parameter family 
of the so called "generalized inverse Gaussian distributions" defined for (a, 6, A) in 
(0, +oo) x [0, +oo) x R by 

»\,a,b(dx) = {K\(Vab)) a?b *xx 1 e x p - \ { a x + bx'1) l(0,+Oo)(^)dx (1.3), 

where K\ is a Bessel function (Watson 1966, p. 91). 
Probability distributions (1.3) have a natural extension to the space of symmetric 

(n,n) real matrices, which extends nicely the fact that (1.3) is the distribution of a 
random continued fraction whose coefficients are independent and gamma distributed 
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(see Letac and Seshadri 1983). This extension has been performed by E. Bernadac 
(1992) and even been made on general symmetric cones (see Bernadac 1993 and 1995). 
In this extension, the gamma distributions are replaced by the Wishart distributions 
on symmetric real matrices or on symmetric cones. 

However, in this extension, the particular role played by A = —1/2 when speci­
alizing (1.3) to (1.1) disappears, and although the extension of (1.3) to matrices is 
natural, extension of (1.1) is not. So one can look for an other path, and instead of 
trying to generalize (1.3), through for instance continued fractions, one can try to 
generalize (1.1) to symmetric matrices through (1.2). To describe what we have in 
mind, it is better to introduce a few definitions now. 

Let E be a Euclidean space with dimension n, and let 5 be the space of symmetric 
endomorphisms of E. We equip S also with a Euclidean structure through the scalar 
product on S 

(a, 6) 
1 

n 
Trace ab. 

If 7 C R, one denotes by S(I) the set of a in 5 with eigenvalues in 7; 5(7) is convex 
if 7 is an interval. For simplicity we write S+ = S((0,4-oo)) (resp. 5+ = S([0, +oo))) 
the cone of symmetric positive-definite (resp. positive) endomorphisms. Also, if e is a 
basis in E and a is in 5 , we write [a)e as its matrix in base e. 

Let / : 7 —• R be any function. Suppose that a is in S(I) and that e is an 
orthonormal basis which diagonalizes a, with [a]e = Diag(Ai, . . . , An). Then it is a 
standard exercise to show that f(a) in S defined by 

[ / ( a J l ^ Diag ^ A O , . . . , ^ ) ; f f g w s D C (1.4) 

actually does not depend on e. Thus / : S(I) *-> S is a well defined function. 
Furthermore, if 7 is an interval and if the derivative / ' exists on 7, then / is 
differentiate, and its differential (/),(a) on a, evaluated at the point h of 5 , is 
computed as follows : defining g : Ixl —• R by : 

g(\,\) = f'(\) and P ( A , M ) = ( ( / ( A ) - ( / ( M ) ) / ( A - M ) if A ^ M 

then, if e is an orthonormal basis with [a]e = Diag(Ai,. . . , An), we have 

[ ( / ) ' (o)W]. = (p(A.,Ai)fc«), for Me = ( M (1.5) 

The proof of (1.5) is a not so easy exercise in advanced calculus. 

From (1.5), one deduces two facts. Asume that I is an open interval, and consider 
the function 

a Trace/(a) 5(7) —> R (1.6) 

Then if / ' exists, the differential of (1.6) in a is (/')(<*), from (1.5) (Note that we 
identify S with its dual through the Euclidean structure of 5 , and the differential of 
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a real function on S can then be called a gradient). Furthermore, assume that / is 
convex on J. Then (1.6) will be convex on S(I) : to see this point, assume that / " 
exists. Then, for arbitrary u in S and a in 5(7) (which is an open convex subset of 
5) , there exists a > 0 such that the function 

( - a , a) • R 11—• F(t) = Trace f(a+tu) 

is well defined. With the help of (1.5) we compute 

F"(0) = Trace f"(a)u2 . 

Since / " > 0, then / " (a ) is in 5+, as well as uf"(a)u. Thus F"(0) > 0. This 
implies that (1.6) is convex. The case where / " does not exist is then treated by 
approximation. 

To come back to our initial problem, i.e. a suitable generalization of (1.1) through 
(1.2), we consider (1.6) when / is the logarithm of the Laplace transform L of some 
positive measure /xonR. Let us assume that for all A in the open interval I 

L(A) = exp/(A) = exp(-Aar) fi(dx) < oo (1.7) 

It is well known that / is convex on I. Thus, as we have seen, (1.6) is convex, and 
one can wonder if there exists a positive measure /2 on S such that for all a in S(I) 
one has 

Det L(a) = expTrace/(a) = 
JS 

exp (— Trace(ox)) jx{dx) (1.8) 

An instance for which it is true is the case I = K and /(A) = a2X2/2 : clearly /2 is 
a suitable Gaussian distribution on 5. An other instance for which it is almost true 
is the case where I = (0, +oo) and /(A) = — p Log A, where p > 0. Here (1.7) holds 
with 

fi(dx] 
MPLO 

T(P) 
!(0,+oo)(z)d£ . 

However fx defined by (1.8) will be positive if and only if 

p € { ! , ! , § , • • . , s y 1 } L l ( S f i , + o o ) 1.9) 

This result (1.9) is due to Gindikin (1975). It has been rediscovered again and 
again : see Casalis and Letac (1994) for references, and a short proof. 

We are now able to state the aim of this note : to study the existence of a positive 
/2 in (1.8) when J = (0,+oo) and /(A) = -pV^A (compare (1.2) and (1.7)). As we 
shall see (section 5) the answer is negative for n > 2, and we shall prove this by 
computing explicitely a signed measure /2 such that (1.8) holds when n = 2. Explicit 
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calculations for n > 3 seem hopeless. Section 2 is devoted to a general study of (1.8). 
Section 3 specializes to n = 2. Section 4 studies an integral equation that we meet 
by considering the case /(A) = —py/2X and a slight extension of the problem to the 
Lorentz cone, which appears in section 5. 

§2. Properties of /2 for general n. We keep the notations of the introduction; 
furthermore we denote by 0(E) and 0(5) the orthogonal groups of the Euclidean 
spaces E and 5 . There is a natural representation of 0(E) in 0 (5) defined as follows : 
if u is in 0(£7), then for all a in 5, gu(p) = uau"1 is in 5. 

Furthermore Trace (gu{o>))2 = Trace a2, thus gu is in 0 (5 ) . An argument of 
convexity shows easily that if u is in the subgroup 0+(i?) of rotations of 0(2£), 
then gu is in 0+ (5) too. Clearly gUigu = and u*-> gu defines an homomorphism 
from 0(E) to 0 (5 ) and from 0+(E) to 0+(5) . Note also that 

uau 1 = a for all n in 0+ (E) a G R . i d s (2.1) 
waii 1 = a for all a in 5 14 = ±idjs (2.2) 

Denote by G and C?+ the respective images of 0(E) and 0+ (I?) in 0 (5 ) by w gu. It 
is easy to see that a and 6 in 5 are in the same G+ orbit —thus in the same G orbit— 
if and only if their spectrum coincide. More precisely if Ai(a) < A2(a) < . . . < An(o) 
is the sequence of not necessarily distinct eigenvalues of a, then there exists u in 
0+(25) such that 6 = uau~x if and only if Xj(a) = Xj(b) j = 1 , . . . ,n . The necessary 
condition is clear; to prove the sufficient condition, if e and / are orthonormal basis 
of E such a(Sj) = \j(a)Sj and b(fj) = \j(b)fj then one takes u in 0+(I2) such that 
w(/j-) = e^. However, if such a w has determinant —1, one has to replace / i by —/i, 
still an eigenvector of 6. 

Assume now that J and /x are as in (1.7) and suppose that (1.8) holds with a signed 
measure ji. For u in 0(E) we have : 

Trace/(a) = Trace f(gu(o>)) 

Thus (1.8) becomes 

JS 
exp ( - Trace(ax)) Jx{dx) = expTrace/(a) = exp Trace f(gu(o>)) 

s 
exp ( -Trace (agu-i(x))) jl(dx) = / exp ( - Trace(ay)) fri(dy) 

? J s 

where fii(dy) is the image of /1 by x y = pv-i(x). 

Thus /i is invariant by G and G+. Now 5 is split by G+ in orbits and the set 
of these orbits is parametrized by the increasing sequence of the eigenvalues of any 
element of the orbit, i.e. by 

H = {heRn ; h1<h2<...<hn}. 
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