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Maassen Kernels and Self-Similar Quantum Fields 

K.R. Parthasarathy 

Abstract. — In his Lecture Notes [Maj] P. Major has outlined a theory of multiple Wiener-
Itó integrals with respect to a stationary Gaussian random field £ over the Schwartz space 
S(IR^) of rapidly decreasing smooth functions in IR?. Furthermore, he has exploited the same 
to construct self-similar random fields subordinate to £. Here, we observe that the Hubert 
space of functions square integrable with respect to the probability measure P of ( can be 
identified in a natural way with the Hubert space of functions square integrable with respect 
to the symmetric Guichardet measure [Gui] constructed from the spectrum of (. Under such 
an identification, multiplication of random variables on the probability space of ( becomes 
the twisted convolution of Lindsay and Maassen [Li M 1,2] for Maassen kernels [Maa], [Mey]. 
The multiple Wiener-Ito integral of Major is described neatly by a twisted version of Meyer's 
multiplication formula (see (IV.4.1 in [Mey]). Following Lindsay and Parthasarathy [Li P] we 
introduce the weighted and twisted convolution of Maassen kernels, present a generalization 
of Meyer's formula and exploit it to construct a family of operator fields whose expectations in 
the vacuum state exhibit a simultaneous self-similarity property. Such a construction includes 
Major's examples and at the same time yields a self-similar Clifford field. 

1 An involutive Gaussian random field and the Lindsay-Maassen twisted 
convolution algebra 

Let (X, T, ra) be a <j-finite measure space equipped with an ra-preserving involution 
x —• x on X satisfying (x)~ = x. For any measure /¿, denote by L2M(^L) and L2{ii) 
respectively the real and complex Hubert spaces of functions square integrable with 
respect to \i. Then the following holds: 

Theorem 1.1 There exists a probability space (fi,.Fm>-Pm) and a linear map 
£ : L2m(m) —> L2(Pm) satisfying the following: 

(a) For each / £ L^m), £(/) is a complex-valued Gaussian random variable of 
mean 0. 

(b) For any f,geL2R(m), 

f(x)g(x f(x)g(x)dm(x). 
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(c) If f{x) = f(x) and / € L^(m) then £(/) = « / ) . 
(d) The a algebra generated by { £ ( / ) , / £ LUrrC is Tm. 

Proof: For any / , g e L2

m{m] define 

f(x)g(x \(f(x)±f(x))9(x)dm(x). (1.1) 

Prom the ~ - invariance of m and Schwarz's inequality we have K±(f,g) = K±(g, /), 

f /(*)/(*)dro(*)l < I f2(x)dm(x) 

and therefore 

f(x)f(f 1 
2 

(/2(x) ± f(x)f(x))dm(x) > 0. 

In other words K+ and If _ axe non-negative definite bilinear forms on L^m) with 
non-trivial kernel (consisting of odd functions for K+ and even functions for K-). 
Hence there exist two independent real Gaussian random fields and £_ over L2R(m) 
on some probability space (fi,!Fm,Pm) for which 

Щ±(Л = о, Щ+(ЛМд) = K+(f,g),EUf)Ug) K-(f,g) (1.2) 

and Tm is generated by { £ + ( / ) , £ - ( / ) , / € L2m(m)}. Elementary algebra using (1.1), 
(1.2) and ^-invariance of m yields 

E(Mf) - M/) )2 = m-U)+*-(/))' = o (1.3) 

where f(x) — f{x). Define 

«/) = e*(/)+«-(/)• 
Clearly, f is a linear map satisfying (a) and (c). Furthermore 

E(Mf) - M/))2 = m-U)+*-(g))' f(x)g(x)dm(x) 

proving (b). Property (d) is immediate. 

Corollary 1.2 Let { £ ( / ) , / € L2R(m)} be as in Theorem 1.1. For any / in the 
complex Hilbert space L2(m) with / = /1 +1/2, where /1 and /2 are respectively 
the real and imaginary parts of / , let £(/) = f (/1) + if (/2). Then {£(/) , / € L2(m)} 
satisfies the following: 

(a) The correspondence / —• £(/) is complex linear. 
(b) For each / , £( /) is a complex-valued Gaussian random variable of mean 0. 
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(e) EeWÏ = exp § / f(x)f(x)dm(x). 

(d) If f(x) = Hi), then £(/) = Ê(f 

(e) EeWÏ = exp § / f(x)f(x)dm(x). 

Proof: The first four parts (a) - (d) are immediate from Theorem 1.1. The last part 
follows from the «-—invariance of m and the relation 

«/) = É+(A) + «+(/a) +{f)eî(g)+.«-(/»)) 

where £+ and £- are the independent real Gaussian random fields over L2R(m) with 
respective covariance kernels K+ and K- in the proof of Theorem 1.1. • 

Remark 1.3 In Corollary 1.2 define the normalised exponential random variable 

edf) by 

e £ ( / ) = e x p ( £ ( / ) - E 
2 

f(x)f(x)dm(x)) (1.4) 

for / G L2(ra). Then {e^( / ) , / € £2(TM)} is a linearly independent and total set in 
L2(Pm). Furthermore 

JEe^{f)eî(g) = exj: f(x) g(x)dm(x)i (1.5) 

( / M s ) = «*(/ + ^)exP /(^)p(x)dm(x) (1.6 

for all / , # E L2(ra). 
We shall denote by £^ C L2(Pm) the dense linear manifold generated by {e^(/), / G 

L2(m)}. Then (1.6) implies that £̂  is an algebra of random variables on (ft, Tm, Pm). 
Owing to property (d) in Corollary 1.2 we may call £ an involutive Gaussian random 
field. 

From now on we assume that (X,^F,m) is a separable, nonatomic and tr-finite 
measure space. Our aim is to identify L2(Pm) in Theorem 1.1 with L2(mr) where mr 
is the symmetric measure of Guichardet [Gui] in the space T(X) of all finite subsets 
of X, constructed from ra. We denote the Guichardet symmetric measure space by 
(r(X), J r ^ r ) so that integration with respect to mr is determined by 

T(x) 
/(<7)dmr(<7) = / ( 0 H 

oo 

n=l 

1 
n! 

f({xi,X21 • •, xn})m(dxi) • • • m(da;n) (1.7) 

for any / G L1(mr) where, on the right hand side, /({a?i,£2> • • • >sn}) is viewed as a 
symmetric measurable function of n variables Xi,X2, ...,a:n with all the x\s distinct. 
It is to be noted that the n-fold product of the nonatomic measure m has its support 
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in the subset {(xux2l ...,xn) : Xi G X and Xi ^ Xj if i ^ j } . Denote by Tn(X) the 
n-fold cartesian product of T(X) and by T^(X) C rn (X) the subset 

1£ = (0ì,<r2i...f*n)kt б П Д л П Л = 0 if l Ф1\. 

Then the product measure rap satisfies rap(rn(-X')\r(n)(-X')) = 0. For simplicity we 
write da = drar(cr) in T(X). If <7i,cr2, ...,<7n are disjoint elements of T(X) we write 
<T\ + (72 H h<rn 01 ]C*=i to denote UiLi*7*- Then one has the following Maassen's 
sum-integral formula for / € L1(rap): 

r(«)(x) 
f(<Tl,<T2,—,<7n)d(Tld<T2—d(7n = 

T(X) h<Tn=<r 
f[(T\ <тп) \da (1.8) 

For a proof see [Mey], [Li P]. Following [Maa] we introduce the space K>(X) = 
/Cpf, TO, ~ ) C L2(rar) of Massen kernels: 

K{X) = { / i o#"|/(o-)|2da < oo V a > 1}. (1.9) 

The Lindsay-Maassen twisted convolution / * g between any two Maassen kernels / 
and g is defined by 

K{X) = {/i 

<Tl+<T2=(T 
/((7i + U))P(A; + a2)dw (1.10) 

where the summation on the right hand side is over all partitions of a into a pair a\, a2 
of subsets (which can be empty). Then / * g G /C(A") and satisfies the inequality 

\a*a(f*g)(<r)\2da< 7i + U))P(A; + a2)dw \(aV3)*°g(<T)\2d<T for all o > 1. 

(1.11) 
For a proof see Proposition 3.2 in [Li P]. The ~ - invariance of ra implies the 
invariance of the associated Guichardet measure rar on T(X) under the involution 
transformation u —• u = {x\x G a;} and hence it is clear from (1.10) that f*g = g*f. 
It follows from the sum-integral formula (1.8) that * is even associative. This 
will also follow from our Theorem 1.4. Thus K,(X) becomes a commutative and 
associative algebra equipped with the involution / —• / where f(a) = f(dr). A simple 
computation shows that ( / * g)~ = / * g. 

For any ip G L2(m) define the associated exponential kernel e(<p) G K,{X) by 

e ( I P ) W = 
1 

Tl+<T2 
if a = 0 , 
otherwise. (1.12) 

Then 

e{ip) * e(^) = e(<p + rp) exp r 
<^(x)'0(a:)dra(a:), 

(1.13) 
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