Astérisque

K. R. PARTHASARATHY Maassen Kernels and self-similar quantum fields

Astérisque, tome 236 (1996), p. 227-247

http://www.numdam.org/item?id=AST_1996__236__227_0

© Société mathématique de France, 1996, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Maassen Kernels and Self-Similar Quantum Fields

K.R. Parthasarathy

Abstract. — In his Lecture Notes [Maj] P. Major has outlined a theory of multiple Wiener-Itô integrals with respect to a stationary Gaussian random field ξ over the Schwartz space $S(\mathbb{R}^d)$ of rapidly decreasing smooth functions in \mathbb{R}^d . Furthermore, he has exploited the same to construct self-similar random fields subordinate to ξ . Here, we observe that the Hilbert space of functions square integrable with respect to the probability measure P of ξ can be identified in a natural way with the Hilbert space of functions square integrable with respect to the symmetric Guichardet measure [Gui] constructed from the spectrum of ξ . Under such an identification, multiplication of random variables on the probability space of ξ becomes the twisted convolution of Lindsay and Maassen [Li M 1,2] for Maassen kernels [Maa], [Mey]. The multiple Wiener-Itô integral of Major is described neatly by a twisted version of Meyer's multiplication formula (see (IV.4.1 in [Mey]). Following Lindsay and Parthasarathy [Li P] we introduce the weighted and twisted convolution of Maassen kernels, present a generalization of Meyer's formula and exploit it to construct a family of operator fields whose expectations in the vacuum state exhibit a simultaneous self-similarity property. Such a construction includes Major's examples and at the same time yields a self-similar Clifford field.

1 An involutive Gaussian random field and the Lindsay-Maassen twisted convolution algebra

Let (X, \mathcal{F}, m) be a σ -finite measure space equipped with an *m*-preserving involution $x \to \tilde{x}$ on X satisfying $(\tilde{x})^{\sim} \equiv x$. For any measure μ , denote by $L^2_{\mathbb{R}}(\mu)$ and $L^2(\mu)$ respectively the real and complex Hilbert spaces of functions square integrable with respect to μ . Then the following holds:

Theorem 1.1 There exists a probability space $(\Omega, \mathcal{F}_m, P_m)$ and a linear map $\xi: L^2_{\mathbb{R}}(m) \to L^2(P_m)$ satisfying the following:

(a) For each $f \in L^2_{\mathbb{R}}(m)$, $\xi(f)$ is a complex-valued Gaussian random variable of mean 0.

(b) For any $f, g \in L^2_{\mathbb{R}}(m)$,

$$\mathbb{I}\!\!E\,\overline{\xi(f)}\xi(g)=\int f(x)g(x)dm(x).$$

(c) If $\tilde{f}(x) \equiv f(\tilde{x})$ and $f \in L^2_{\mathbb{R}}(m)$ then $\xi(\tilde{f}) = \overline{\xi(f)}$.

(d) The σ algebra generated by $\{\xi(f), f \in L^2_{\mathbb{R}}(m)\}$ is \mathcal{F}_m .

Proof: For any $f, g \in L^2_{\mathbb{R}}(m)$ define

$$K_{\pm}(f,g) = \int \frac{1}{2} (f(x) \pm f(\tilde{x})) g(x) dm(x).$$
(1.1)

From the ~ - invariance of m and Schwarz's inequality we have $K_{\pm}(f,g) = K_{\pm}(g,f)$,

$$|\int f(\tilde{x})f(x)dm(x)| \leq \int f^2(x)dm(x)$$

and therefore

$$K_{\pm}(f,f) = \frac{1}{2} \int (f^2(x) \pm f(\tilde{x})f(x))dm(x) \ge 0.$$

In other words K_+ and K_- are non-negative definite bilinear forms on $L^2_{\mathbb{R}}(m)$ with non-trivial kernel (consisting of odd functions for K_+ and even functions for K_-). Hence there exist two independent real Gaussian random fields ξ_+ and ξ_- over $L^2_{\mathbb{R}}(m)$ on some probability space $(\Omega, \mathcal{F}_m, P_m)$ for which

$$I\!\!E\xi_{\pm}(f) = 0, \quad I\!\!E\xi_{+}(f)\xi_{+}(g) = K_{+}(f,g), \quad I\!\!E\xi_{-}(f)\xi_{-}(g) = K_{-}(f,g)$$
(1.2)

and \mathcal{F}_m is generated by $\{\xi_+(f), \xi_-(f), f \in L^2_{\mathbb{R}}(m)\}$. Elementary algebra using (1.1), (1.2) and \sim -invariance of m yields

$$I\!\!E(\xi_+(f) - \xi_+(\tilde{f}))^2 = I\!\!E(\xi_-(f) + \xi_-(\tilde{f}))^2 = 0$$
(1.3)

where $\tilde{f}(x) = f(\tilde{x})$. Define

$$\xi(f) = \xi_+(f) + i\xi_-(f).$$

Clearly, ξ is a linear map satisfying (a) and (c). Furthermore

$$I\!\!E \ \overline{\xi(f)} \ \xi(g) = K_+(f,g) + K_-(f,g) = \int f(x)g(x)dm(x)$$

proving (b). Property (d) is immediate.

Corollary 1.2 Let $\{\xi(f), f \in L^2_{\mathbb{R}}(m)\}$ be as in Theorem 1.1. For any f in the complex Hilbert space $L^2(m)$ with $f = f_1 + if_2$, where f_1 and f_2 are respectively the real and imaginary parts of f, let $\xi(f) = \xi(f_1) + i\xi(f_2)$. Then $\{\xi(f), f \in L^2(m)\}$ satisfies the following:

- (a) The correspondence $f \to \xi(f)$ is complex linear.
- (b) For each $f, \xi(f)$ is a complex-valued Gaussian random variable of mean 0.

(c) $I\!\!E \ \overline{\xi(f)} \ \xi(g) = \int \overline{f}(x)g(x)dm(x).$ (d) If $\tilde{f}(x) \equiv \overline{f(\tilde{x})}$, then $\xi(\tilde{f}) = \overline{\xi(f)}.$ (e) $I\!\!E e^{\xi(f)} = \exp \frac{1}{2} \int f(\tilde{x})f(x)dm(x).$

Proof: The first four parts (a) - (d) are immediate from Theorem 1.1. The last part follows from the \sim -invariance of m and the relation

$$\xi(f) = \xi_+(f_1) + i\xi_+(f_2) + i(\xi_-(f_1) + i\xi_-(f_2))$$

where ξ_+ and ξ_- are the independent real Gaussian random fields over $L^2_{\mathbb{R}}(m)$ with respective covariance kernels K_+ and K_- in the proof of Theorem 1.1.

Remark 1.3 In Corollary 1.2 define the normalised exponential random variable $e_{\xi}(f)$ by

$$e_{\xi}(f) = \exp(\xi(f) - \frac{1}{2} \int f(\tilde{x}) f(x) dm(x))$$
 (1.4)

for $f \in L^2(m)$. Then $\{e_{\xi}(f), f \in L^2(m)\}$ is a linearly independent and total set in $L^2(P_m)$. Furthermore

$$I\!\!E \ \overline{e_{\xi}(f)} e_{\xi}(g) = \exp \int \overline{f(x)} \ g(x) dm(x), \qquad (1.5)$$

$$e_{\xi}(f)e_{\xi}(g) = e_{\xi}(f+g)\exp \int f(\tilde{x})g(x)dm(x)$$
(1.6)

for all $f, g \in L^2(m)$.

We shall denote by $\mathcal{E}_{\xi} \subset L^2(P_m)$ the dense linear manifold generated by $\{e_{\xi}(f), f \in L^2(m)\}$. Then (1.6) implies that \mathcal{E}_{ξ} is an algebra of random variables on $(\Omega, \mathcal{F}_m, P_m)$. Owing to property (d) in Corollary 1.2 we may call ξ an *involutive Gaussian random field*.

From now on we assume that (X, \mathcal{F}, m) is a separable, nonatomic and σ -finite measure space. Our aim is to identify $L^2(P_m)$ in Theorem 1.1 with $L^2(m_{\Gamma})$ where m_{Γ} is the symmetric measure of Guichardet [Gui] in the space $\Gamma(X)$ of all finite subsets of X, constructed from m. We denote the Guichardet symmetric measure space by $(\Gamma(X), \mathcal{F}_{\Gamma}, m_{\Gamma})$ so that integration with respect to m_{Γ} is determined by

$$\int_{\Gamma(x)} f(\sigma) dm_{\Gamma}(\sigma) = f(\emptyset) + \sum_{n=1}^{\infty} \frac{1}{n!} \int f(\{x_1, x_2, \cdots, x_n\}) m(dx_1) \cdots m(dx_n) \quad (1.7)$$

for any $f \in L^1(m_{\Gamma})$ where, on the right hand side, $f(\{x_1, x_2, \dots, x_n\})$ is viewed as a symmetric measurable function of n variables x_1, x_2, \dots, x_n with all the $x'_i s$ distinct. It is to be noted that the *n*-fold product of the nonatomic measure m has its support

in the subset $\{(x_1, x_2, ..., x_n) : x_i \in X \text{ and } x_i \neq x_j \text{ if } i \neq j\}$. Denote by $\Gamma^n(X)$ the *n*-fold cartesian product of $\Gamma(X)$ and by $\Gamma^{(n)}(X) \subset \Gamma^n(X)$ the subset

$$\{\underline{\sigma} = (\sigma_1, \sigma_2, ..., \sigma_n) | \sigma_i \in \Gamma(X), \sigma_i \cap \sigma_j = \emptyset \text{ if } i \neq j \}.$$

Then the product measure m_{Γ}^{n} satisfies $m_{\Gamma}^{n}(\Gamma^{n}(X)\setminus\Gamma^{(n)}(X)) = 0$. For simplicity we write $d\sigma = dm_{\Gamma}(\sigma)$ in $\Gamma(X)$. If $\sigma_{1}, \sigma_{2}, ..., \sigma_{n}$ are disjoint elements of $\Gamma(X)$ we write $\sigma_{1} + \sigma_{2} + \cdots + \sigma_{n}$ or $\sum_{i=1}^{n} \sigma_{i}$ to denote $\bigcup_{i=1}^{n} \sigma_{i}$. Then one has the following Maassen's sum-integral formula for $f \in L^{1}(m_{\Gamma}^{n})$:

$$\int_{\Gamma^{(n)}(X)} f(\sigma_1, \sigma_2, ..., \sigma_n) d\sigma_1 d\sigma_2 ... d\sigma_n = \int_{\Gamma(X)} \{ \sum_{\sigma_1 + \dots + \sigma_n = \sigma} f(\sigma_1, ..., \sigma_n) \} d\sigma.$$
(1.8)

For a proof see [Mey], [Li P]. Following [Maa] we introduce the space $\mathcal{K}(X) = \mathcal{K}(X, m, \sim) \subset L^2(m_{\Gamma})$ of Massen kernels:

$$\mathcal{K}(X) = \{ f | \int a^{\#\sigma} |f(\sigma)|^2 d\sigma < \infty \quad \forall \quad a > 1 \}.$$
(1.9)

The Lindsay-Maassen twisted convolution f * g between any two Maassen kernels f and g is defined by

$$(f * g)(\sigma) = \sum_{\sigma_1 + \sigma_2 = \sigma} \int f(\sigma_1 + \tilde{\omega})g(\omega + \sigma_2)d\omega$$
(1.10)

where the summation on the right hand side is over all partitions of σ into a pair σ_1, σ_2 of subsets (which can be empty). Then $f * g \in \mathcal{K}(X)$ and satisfies the inequality

$$\int |a^{\#\sigma}(f * g)(\sigma)|^2 d\sigma \le \int |(a\sqrt{3})^{\#\sigma} f(\sigma)|^2 d\sigma \cdot \int |(a\sqrt{3})^{\#\sigma} g(\sigma)|^2 d\sigma \text{ for all } a \ge 1.$$
(1.11)

For a proof see Proposition 3.2 in [Li P]. The \sim - invariance of m implies the invariance of the associated Guichardet measure m_{Γ} on $\Gamma(X)$ under the involution transformation $\omega \to \tilde{\omega} = \{\tilde{x} | x \in \omega\}$ and hence it is clear from (1.10) that f * g = g * f. It follows from the sum-integral formula (1.8) that * is even associative. This will also follow from our Theorem 1.4. Thus $\mathcal{K}(X)$ becomes a commutative and associative algebra equipped with the involution $f \to \tilde{f}$ where $\tilde{f}(\sigma) = \overline{f(\tilde{\sigma})}$. A simple computation shows that $(f * g)^{\sim} = \tilde{f} * \tilde{g}$.

For any $\varphi \in L^2(m)$ define the associated exponential kernel $e(\varphi) \in \mathcal{K}(X)$ by

$$e(\varphi)(\sigma) = \begin{cases} 1 & \text{if } \sigma = \emptyset, \\ \prod_{x \in \sigma} \varphi(x) & \text{otherwise.} \end{cases}$$
(1.12)

Then

$$e(\varphi) * e(\psi) = e(\varphi + \psi) \exp \int \varphi(\tilde{x}) \psi(x) dm(x), \qquad (1.13)$$