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ON A N A D D I T I V E PROBLEM OF ERDÖS A N D STRAUS, 2 

by 

Jean-Marc Deshouillers & Gregory A. Freiman 

Abstract. — We denote by sA A the set of integers which can be written as a sum of s 
pairwise distinct elements from A. The set A is called admissible if and only if s ^ t 
implies that sAA and tAA have no element in common. 

P. Erd6s conjectured that an admissible set included in [l,iV] has a maximal 
cardinality when A consists of consecutive integers located at the upper end of the 
interval [l,iV]. The object of this paper is to give a proof of ErdoV conjecture, for 
sufficiently large N. 

Let A be a set of positive integers having the property that each time an integer 
n can be written as a sum of distinct elements of A, the number of summands is well 
defined, in that the integer n cannot be written as a sum of distinct elements of A 
with a different number of summands. This notion has been introduced by P. Erdos 
in 1962 (cf. [2]) and called admissibility by E.G. Straus in 1966 (cf. [5]). In other 
words, if we denote by sAA the set of integers which can be written as a sum of s 
pairwise distinct elements from A then A is admissible if and only if s ^ t implies 
that sAA and tAA have no element in common. 

Erdos conjectured that an admissible subset A included in [1,N] has a cardinality 
which is maximal when A consists of consecutive integers located at the upper end of 
the interval [l,iV]. As it was computed by E.G. Straus, the set 

j v - * + i,iv-ifc + 2,...,iv; 

is admissible if and only if k : 2< N + 1 /4- 1. 
Straus himself proved that N is the right order of magnitude for the cardinality 

of a maximal admissible subset from [l,iV]. More precisely, he proved the inequality 
\A\ < (4/\/3 4- o(l))y/N. The constant involved has been slightly reduced by P. 
Erdos, J-L. Nicolas and A. Sarkozy (cf. [31) and we proved (cf. fll) the inequality 
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A 2 + o(l) N The object of this paper is to give a proof of Erdos conjecture, 
at least when N is sufficiently large. 

Theorem 1. — There exists an integer NQ, effectively computable, such that for any 
integer N > NQ and any admissible subset A C [l,iV] we have 

Card A 2 JV + 1 /4 - 1. 
The proof is based on the description of the structure of large admissible sets we 

obtained previously, namely : 

Theorem 2 (J-M. Deshouillers, G.A. Freiman [1]). — Let A be an admissible set in
cluded in [1,N], such that Card A > 1.96\/N. If N is large enough, there exist 
C C A and an integer q having the following properties : 
(i) Card C < 10 5 iV 5 / 1 2 , 
(ii) for some t the set tAC contains at least 3iV 5/ 6 terms in an arithmetic progression 
modulo q, 
(Hi) A\C is included in an arithmetic progression modulo q containing at most JV7/1 2 

terms. 

Although we do not develop this point, it will be clear from the proof that our 
arguments may be used to describe the structure of maximal admissible subsets of 
[1, N], leading for example to the fact that when N has the shape n 2 or n 2 + n (and 
n sufficiently large), the Erdos - Straus example is the only maximal subset of [l,iV]. 

1. We first establish a lemma expressing the fact that if a set of integers V is part 
of a finite arithmetic progression with few missing elements, then the same is locally 
true for sAT>. 

Proposition!. — Let us consider integers r,s,t and a,q such that t > 2s — q, s > 
4r + 3 -f q and 0 < a < q. 
Let further V = {d\ < d2 < - · * < dt} be a set of t distinct integers congruent to a 
modulo q such that dt — d± = (t — 1 + r)q,and denote by m (resp. M) the smallest 
(resp. largest) element in sAV. Then, among 2r + 1 consecutive integers congruent 
to sa modulo q and laying in the interval [m, Ml, at least r + 1 belong to sAV. 

Proof — We treat the special case when a = 0, q = 1 and V is included in [1, t]. We 
notice that the general case reduces to this one by writing 
di — d\ + q(5i — 1) and considering the set {Si,...,St}. 

Let x be an integer in sAV fl [m, (m + M)/2]. We first show that the interval 
[x, x -f 3r] contains at least 2r H- 1 elements from sAV. Since x is in sAT>, we can find 
d(l) < · · · < d(s), elements in £>, the sum of which is x. 

Let us show that d(l) is less than t — s — Sr. On the one hand we have 

m + M r -h 1 … r H- 5 t+r-5+1 … t + r s 
2 

2t + 4r + 2] 

and on the other hand we have 

x d(l) 'd(l) + 1 … d(l) + s - 1 s 
2 

2d(l) + s - 1 
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The inequality x < (m + M)/2 implies that we have 

2d(l) + 5 - 1 t 4- 2r 4- 1, 

whence 
2d(l) 2 £ - s - 3r t - s - 4r - 2 

and we notice that t — s — 4r — 2 is positive, by the assumptions of Proposition 1. 
Since d(l) is less than t — s — 3r, the interval [d(l), t 4- r] contains at least s + 4r +1 

integers. We denote by %\ < * · · < i\ the indexes of those d's such that d(i^ 4- 1) — 
d(ik) > 2, with the convention that d(ii + l) = 31>t+r+l in the case when d(s) < t+r. 
The set 

z 

k=l 

d(ik) 1, d t* + 1 - 1 

contains at least 4r 4-1 integers. We now suppress from those intervals those which 
contain no element from X>, and we rewrite the remaining ones as 

d(ji) Ι , Φ ι + 1 ) I 5***5 d(h) 1, d(jh + 1) 1 

They contain at least 3r + 1 integers, among which at most r are not in V. 
Let us define u± to be the largest integer such that d(ji) + ui is in V and is less 

than d(ji + 1), and let us define U2, • • •, Uh in a similar way. We consider the integers 

x y d(ji) … d(jh) which defines y 

x + l y d(ji) 1 d(h) … d(h) 

… 

X + Ui y + d(jt) + u1 +d(j2) … -d{jh) 

… 

X + Ui … uh y + d{h) + w i d(j2) +^2 … d(jh) +uh. 
One readily deduces from this construction that the interval 

x, x min Sr. ui + · * · + Uh 

contains at most r elements which are not in sAV. 
What we have proven so far easily implies that any interval [z — r, z] with m < 

z < (M + m)/2 contains at least one element in sAV. Let us consider an interval 
[y, y + 2r] with m < y < (M 4- m)/2. By what we have just said, the interval [y — r, y] 
contains an element in sAV, let us call it x. As we have shown the interval [x, x 4- 3r] 
contains at most r integers not in s A P, so that [y,y 4- 2r] contains at most r integers 
not in 5AP, which is equivalent to say that it contains at least r 4- 1 elements from 
sAV. 

A similar argument taking into account decreasing sequences and starting with M 
shows that any interval [y — 2r,y] with {m + M)/2 < y < M contains at least r + 1 
elements from sAV. 
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2. We now prove the following result concerning the structure of a large admissible 
finite set. 

Theorem 3. — Let A = {ai < · · · < a A} be an admissible subset of [l,iV] with cardi
nality A = 2N1/2 + <9(iV 5/ 1 2), and let us define q to be the largest integer such that 
A is contained in an arithmetic progression modulo q. We have q = 0 ( iV 5 / 1 2 ) and 
there exists an integer u in [ i V 1 1 / 2 4 , 2 i V n / 2 4 ] such that 

a>A-u au+1 q '2JV1/2 0 ( i V n / 2 4 ) 

Proof. — The proof is based on the structure result we quoted in the introduction as 
Theorem 2. We keep its notation and first show that an integer q satisfying (ii) and 
(iii) is indeed the largest integer such that A is contained in an arithmetic progression 
modulo q. We let B denote A\C. 

A simple counting argument will show that A is included in the same arithmetic 
progression as B. Otherwise, let us consider an element a £ A which is not in the 
same arithmetic progression as B modulo q. The set sAA contains the disjoint sets 
s A S a n d a + ( s - l ) A £ . We thus have \sAA\ > \sAB\ + \(s- 1)AB\. It is well-known (cf. 
[4] for example) that \sAB\ > s(\B\ — s) for s < |B|, and since A C [1, N] is admissible 
we have 

N B -1 Card 
's 

sABU(a+(s - 1)A#' 
2 

S 
sAB 2 

S S 20 B s 1 
3 

B 3 O(N) 

which implies B 3 0(1) N so that we have A B C 3 o(l)) N 

a contradiction. 
We have so far proven that q divides g := gcd(a2 — a i , . . . , a A — CL\). Property (ii) 

implies that q is a multiple of g, so that we have q = g, as we wished to show. 
The second step in the proof consists in showing that for 0 < k < \B\ — q, any 

element in kAB is less than any element in (k + q)AB. Let us call J the 3iV 5/ 6 

consecutive terms of the arithmetic progression modulo q, the existence of which is 
asserted in (ii). Since B is included in an arithmetic progression modulo q with less 
that 3iV 5/ 6 terms, the sets kAB-j- J and {k + q)AB + J consists of consecutive terms of 
arithmetic progressions modulo g, and moreover, they are in the same class modulo 
q. Since A is admissible, the sets kAB 4- J (included in (fc + £)A*4) and (k + q)AB + J 
(included in + ^ + £)A-4) do not intersect. To prove that any element of kAB is 
less that any element of (fe + q)AB, it is now sufficient to notice that kAB contains an 
element (we can consider the smallest element of kAB), which is smaller than some 
element of (fe H- q)AB. 

We now prove that q = 0 ( i V 5 / 1 2 ) . The cardinality of A and Theorem 2 imply that 
\B\ = 2N1/2 + 0 ( i V 5 / 1 2 ) . We choose k so that 2fe + q is \B\ or \B\ - 1. (We notice 
that this is always possible since A contains at least JV1/2 integers from [l,iV] in an 
arithmetic progression modulo q, so that q < iV 1 / 2 ) . By the second step, the largest 
element in kAB is smaller than the largest element in (fe + q)AB. Let z be (fe + q)-th 
element from 23, in the increasing order. We have 

z N fe- 1 Q 
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