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S T R U C T U R E T H E O R Y O F S E T A D D I T I O N 

by 

Gregory A. Freiman 

Abstract. — We review fundamental results in the so-called structure theory of set 
addition as well as their applications to other fields. 

1. 'Structure theory of set addition'^1) is a shorthand for a direction in the study of 
sets which extracts structures from sets for which some properties of their sums (or 
products in a non-abelian case) are known. 

Here is an indication of what is meant by "structure". The first stage is to build 
an equivalence relation on sets. Then, by taking well chosen representatives of an 
equivalence class we are able to reveal its properties and thereby describe its structure 
(see, for example, the Definition and Theorem in §6). 
2. This review is written in the following way. In §§3-8 we explain the main ideas. In 
§§9-12 we make some historical remarks. Then in §§13-19 we present several concrete 
problems in additive and combinatorial number theory, showing how new results may 
be obtained with the help of the described new approach. Further then in §§20-27 we 
try to show a diversity of fields where the ideas of "Structure Theory" may be applied. 
Finally in §§28-35 we discuss methods and problems. In the bibliography we include 
references to a wider spectrum of subjects which may be treated from the point of 
view of Structure Theory. 
3 . This approach to additive problems was originally given the name "Inverse prob
lems of additive number theory". A series of nine papers under this heading was 
published in 1955-1964 (see [85], [86], [87], [88], [89], [90], [91], [92] and [98]). 
4. I quote from my lecture in the Fourth All-Union Mathematical Congress, Leningrad, 
3-12 July 1961 (see [84]): 
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addition held at CIRM (Centre International des Rencontres Scientifiques), Luminy, Marseille, on 
10 June 1993. 
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2 G.A. FREIMAN 

"The term inverse problems of additive number theory appeared in 
1955 in two of my papers [85]^ and [86]. In [85] the following prob
lem was studied. Let 

a i , a 2 , . . . , a r , . . . (1) 
be an unbounded, monotonically increasing sequence of positive num
bers. To have an asymptotic formula 

logg(w) ~ Aua, where A > 0,0 < a < 1 

it is necessary and sufficient that 

n(u) ~ B(A,a)ua/1-a 

where n(u) is the number of terms of a sequence (1) not exceeding 
u, and q(u) is the number of solutions of the inequality 

a in i 4- a2n2 H < u. 

In [86] the case 

\ogq{u) = Aua + O(txf), where 0 < ai < a, 

was studied and an estimate of the error term in the asymptotic 
formula for n{u) was obtained. 

One can easily see that if q(u) is known then (1) is determined in 
a unique way (see [85]). In 'direct' problems we study q(u) when the 
sequence (1) is given; a particular case is the classical problem on the 
representation of positive integers as sums of an unlimited number 
of positive integers. 

Thus a direct problem in additive number theory is a problem in 
which, given summands and some conditions, we discover something 
about the set of sums. An inverse problem in additive number theory 
is a problem in which, using some knowledge of the set of sums, we 
learn something about the set of summands. 

Several cases of inverse problems were studied earlier; see [14] and 
[67]. 

Paul Erdos, in 1942, found an asymptotic formula for n(u) when 

\ogp{u) ~ ay/u 

where p(u) is the number of solutions of an equation 

aini + a2n2 H = u 

where {ai} is some sequence of positive integers (see [67]). 
In the same paper another inverse problem was studied; if q(u) ~ 

Cu2a , where q(u) is the number of solutions of an inequality 

ai + a,j < u, 

2̂̂ The reference numbers given accord with the bibliography of this paper and not the original 
text. 
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then 
n(u) ~ C\u . 

In 1960 V. Tashbaev [252] studied the problem of estimating the error 
term for this inverse problem. 

We will now explain how problems on the distribution of prime 
numbers are connected with inverse problems. If we define 

q(u) = [eu] 

then di = log pi , where pi denotes the ith prime number. Thus the 
problem of the distribution of prime numbers may be treated as an in
verse problem of additive number theory of the type described above. 
The study of inverse problems for different q{u) close to [eu]1 and also 
of direct problems when n(u) is close to eu/u, may give some insight 
into the problem of the distribution of primes, in a way similar to 
that in which the behaviour of a function in the vicinity of a point 
may help to find its value at that point (see A.Beurling [14] and 
B.M.Bredichin [30], [31], [32] and [33]." 

The results of Diamond (see [57], [58], [59], [60] and [61]) should of course be 
mentioned. 

The treatment of prime distribution problems as inverse additive problems have 
not developed up to now. I still consider this approach very hopeful. 
5. We pass on now to the study of additive problems with a fixed number of sum-
mands. The majority of papers mentioned in §3 treat the addition of two equal sets. 
The study of this particular case is usually sufficient to develop ideas, methods and 
results as well as their use in applications. 

Let us start with K C Z with \K\ = k. Define 

2K = K -j- K = {x \ x — al -\- aj, ai,CLj e K}. 

We may ask the question what is the minimal cardinality of 2K1 Evidently, 

\2K\ >2k-l. (2) 

Suppose now that K is such that \2K\ is minimal i.e. \2K\ = 2k — \. What can be 
said about such a Kl It is clear that, 

\2K\ = 2k - 1, (3) 

only if K is an arithmetic progression. 
Suppose now that \K + K\ is not much greater than this minimal value. In that 

case we have the following result [87], describing the structure of K. 

Theorem 1. — Let K be a finite set, K Ç Z. / / 

\K + K\<2k-l + b, 0<b<k-3 

then K is contained in an arithmetic progression of length k + b. 
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Further, suppose that we know that 

\2K\ < Ck, (4) 
where C is any given positive number, we may ask what then is the structure of K? 
6. The theorem answering this question (we will quote it as a main theorem) was 
proved in a previously mentioned series of papers, expositions of it were given in [81] 
and [82], and an improved version of a proof was presented in [105]. We are citing 
here the result of Y. Bilu [16], where he studies a case when C in (4) is a slowly 
growing function of k. 

Definition. — Let A and B be groups, and let K C A and L C B. The map </>: K —>• L 
is called an Fs-homomorphism, if for any # i , • • • ,xs and y±, • - • ,ys in K we have 

xx-\ + xs = yi + • • • + y s • # £ i ) + • • • + 4>(x8) = <t>{yi) + • • • + <f>(ya). 
The Fs-homomorphism <f> is an Fs-isomorphism if it is invertible and the inverse (j> 1 
is also an Fs-homomorphism. 

Let P C Zn be given by 

P = { 0 , . . . , 6 i - l } x . . . x { 0 , . . . , 6 n - l } . 

We have |P |=&i. . . bn. In this paper we will call P an n-dimensional parallelepiped. 

Theorem 2. — Let K c Z and suppose that 

\K + K\ <ak (5) 

where 
k = \K\ >k0(a) № + il 

2(\a + 11 - a) 1, 

then there exists an n-dimensional parallelepiped, P, such that n < [a — 1] and \P\ < 
ck, where c depends only on a and s and there also exists a map (/>: P -> Z which is 
such that P —> <p(P) is an ¥s -isomorphism while K C <f>(P). 

Let us now return to §1. The equivalence relation that we talked about there, 
is now seen to be Fs-isomorphism. A representative of an equivalence class is an 
n-dimensional parallelepiped, P. We now understand that K, a subset of the one-
dimensional space E, has, in fact, a multidimensional structure, being a dense subset 
of an n-dimensional set P (i.e. <^_1(i;C) C P). Consider the numbers 

a = 0((O,... ,O)), ai 0((1,O,. . . ,O)) - a, an 0 ( ( O , Q , . . . , l ) ) - a . 

Then, 

4>(P) [a + aix\ + a2x2 H h anxni with 0 < xi < bi — 1 

Imre Rusza has called such a set </>(P) a generalized arithmetic progression of rank 
n. He gave a new and shorter proof, based on new ideas, of the main theorem together 
with an important generalization; in this the summands A and B may be different, 
although however the condition \A\ — \B\ is required (see [233]). His generalization 
to the case of subsets of abelian groups is to be found in [238]. 
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