Astérisque

YONUTZ V. STANCHESCU

On the structure of sets of lattice points in the plane with a small doubling property

Astérisque, tome 258 (1999), p. 217-240 http://www.numdam.org/item?id=AST 1999 258 217 0>

© Société mathématique de France, 1999, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Astérisque 258, 1999, p. 217-240

ON THE STRUCTURE OF SETS OF LATTICE POINTS IN THE PLANE WITH A SMALL DOUBLING PROPERTY

by

Yonutz V. Stanchescu

Abstract. — We describe the structure of sets of lattice points in the plane, having a small doubling property. Let \mathbb{K} be a finite subset of \mathbb{Z}^2 such that

 $|\mathbb{K} + \mathbb{K}| < 3.5|\mathbb{K}| - 7.$

If \mathbb{K} lies on three parallel lines, then the convex hull of \mathbb{K} is contained in three compatible arithmetic progressions with the same common difference, having together no more than

$$|\mathbb{K}| + \frac{3}{4} \Big(|\mathbb{K} + \mathbb{K}| - \frac{10}{3}|\mathbb{K}| + 5\Big)$$

terms. This upper bound is best possible.

Notation

We write $[m,n] = \{x \in \mathbb{Z} \mid m \leq x \leq n\}$. For any nonempty finite set $K \subseteq \mathbb{R}$, $K = \{u_1 < u_2 < \cdots < u_k\}$ we denote by k = |K| the *cardinality* of K and by $\ell(K)$ the *length* of K, that is the difference between its maximal and minimal elements. If $K \subseteq \mathbb{Z}$ and $k \geq 2$, by d(K) we denote the greatest common divisor of $u_i - u_1$, $1 \leq i \leq k$. If k = 1, we put d(K) = 0. Let $h(K) = \ell(K) - |K| + 1$ denote the number of holes in K, that is $h(K) = |[u_1, u_k] \setminus K|$.

Let A and B be two subsets of an abelian group (G, +). As usual, their sum is defined by $A + B = \{x \in G \mid x = a + b, a \in A, b \in B\}$ and we put 2A = A + A. The convex hull of a set $\mathbb{S} \subseteq \mathbb{R}^2$ is denoted by conv (\mathbb{S}) . Vectors will be written in the form $u = (u_1, u_2)$, where u_1 and u_2 are the coordinates with respect to the canonical basis $e_1 = (1, 0), e_2 = (0, 1)$.

¹⁹⁹¹ Mathematics Subject Classification. - 05D05, 11B75, 11P99.

Key words and phrases. — Two-dimensional lattice points, small doubling property.

1. Introduction

In additive number theory we usually ask what may be said about M + M, for a given set M. As a counterbalance to this direct approach, consider now the inverse problem: we study the properties of M, when some characteristic of M + M is given, for example, the cardinality of the sum set M + M. It was noticed by Freiman [F1] that the assumption that |2M| is small compared to |M|, implies strong restrictions on the structure of the set M. If |2M| = 2|M| - 1 and $M \subseteq \mathbb{Z}$, then M is an arithmetic progression. If we choose bigger values for |2M|, the problem ceases to be trivial. The fundamental theorem of G.A. Freiman [F2] gives the structure of finite sets of integers with small doubling property: $|2M| < c_0|M|$, where c_0 is any given positive number. This theorem was proved using geometric methods of number theory and a modification of the method of trigonometric sums. Y. Bilu recently studied in [B] a case when c_0 is a slowly growing function of |M|. The generalization to the case of different summands M+N, with a new proof, is to be found in the paper of I.Z. Ruzsa [R].

However, in the case of small values of the constant c_0 , elementary methods yield sharper results. Let $\mathbb{K} \subseteq \mathbb{Z}^2$ be a finite set of lattice points. Two cases have been studied by G. A. Freiman [F1], pp.11, 28.

Theorem A. — If $|\mathbb{K} + \mathbb{K}| < 3|\mathbb{K}| - 3$, then

(1) \mathbb{K} lies on a straight line.

(2) \mathbb{K} is contained in an arithmetic progression of no more than $v = |\mathbb{K} + \mathbb{K}| - |\mathbb{K}| + 1$ terms.

Theorem B. — If $|\mathbb{K} + \mathbb{K}| < \frac{10}{3}|\mathbb{K}| - 5$, $|\mathbb{K}| \ge 11$ and \mathbb{K} is not contained in a line, then

(1) \mathbb{K} lies on two parallel straight lines.

(2) \mathbb{K} is contained in two arithmetic progressions with the same common difference having together no more than $v = |\mathbb{K} + \mathbb{K}| - 2|\mathbb{K}| + 3$ terms.

The generalization of Theorems A(1) and B(1), to s lines, $s \ge 3$, was obtained in [S2]:

Theorem C. If $|\mathbb{K} + \mathbb{K}| < \left(4 - \frac{2}{s+1}\right)|\mathbb{K}| - (2s+1)$ and $|\mathbb{K}| \ge 16s(s+1)(2s+1)$, then there exist s parallel lines which cover the set \mathbb{K} .

A result which generalizes Theorems A(2) and B(2) was obtained in [S3].

Theorems A(1), B(1) and C cannot be sharpened by increasing the upper bound for $|2\mathbb{K}|$. (see Example A in **[S2]**.) Assertion (2) of Theorems A and B gives the precise structure theorem for s = 1 and s = 2. In **[S2]** we obtained a sharpening of Theorem B(2) by giving the best possible value of the upper bound for $|2\mathbb{K}|$, under the additional assumption that \mathbb{K} lies on s = 2 parallel lines. We proved that Theorem B(2) is true, even we replace $|2\mathbb{K}| < \frac{10}{3} |\mathbb{K}| - 5$ by $|2\mathbb{K}| < 4|\mathbb{K}| - 6$. More precisely:

Theorem S. — Let $\mathbb{K} \subseteq \mathbb{Z}^2$ be a finite set, which lies on the lines $x_2 = 0$ and $x_2 = 1$. Let the set of abscissae for $x_2 = 0$ and $x_2 = 1$, respectively be equal to A and B.

(1) If
$$\ell(A) + \ell(B) \le 2|\mathbb{K}| - 5$$
, then $(d(A), d(B)) = 1$ and
 $|2\mathbb{K}| \ge (3|\mathbb{K}| - 3) + h(A) + h(B) = (2|\mathbb{K}| - 1) + \ell(A) + \ell(B).$
(2) If $\ell(A) + \ell(B) \ge 2|\mathbb{K}| - 4$ and $(d(A), d(B)) = 1$, then $|2\mathbb{K}| \ge 4|\mathbb{K}| - 6$.

It is not difficult to give examples to show that Theorems A(2), B(2) and Theorem S cannot be sharpened by reducing the quantity v or by increasing the upper bound for $|2\mathbb{K}|$. (see Examples B1 and B2 of Section 3, [S2])

The present paper is devoted to the generalization of Theorem A(2) and S to the case of s = 3 parallel lines. Instead of condition $|2\mathbb{K}| < 3k - 3$, of Theorem A and condition $|2\mathbb{K}| < \frac{10}{3}k - 5$ of Theorem B, we study now a set \mathbb{K} of integer points on a plane, with the following small doubling property

$$|2\mathbb{K}| < 3.5 |\mathbb{K}| - 7.$$

Take a lattice \mathcal{L} generated by \mathbb{K} . We wish to obtain an estimate for the number of points of \mathcal{L} that lie in conv(\mathbb{K}); we are interested in an upper bound of $|\mathcal{L} \cap \text{conv}(\mathbb{K})|$. Some estimate of this number was obtained in [S2, Theorem C]. In this paper we shall give the best possible estimate for $|\mathcal{L} \cap \text{conv}(\mathbb{K})|$. The result implies an affirmative answer to a question of G.A. Freiman [F3] and generalizes previous results of [F1] and [S2].

2. Main Result

An arithmetic progression in \mathbb{Z}^2 is a set of the form

$$P = P(a, \Delta) = \{a, a + \Delta, a + 2\Delta, \dots, a + (p-1)\Delta\},\$$

where $a, \ \Delta \in \mathbb{Z}^2$ and $p = |P| \ge 1$. The vector Δ is called the *common difference* of the progression and a is the *initial term*. We say that $P_i = P_i(a_i, \ \Delta_i), i = 1, 2, 3$ are *compatible* arithmetic progressions, if $\Delta_1 = \Delta_2 = \Delta_3 = \Delta$ and $a_1 + a_3 \equiv 2a_2 \pmod{\Delta}$.

Now we are ready to formulate our main result.

Theorem 1. — Let $\mathbb{L} \subseteq \mathbb{Z}^2$ be a finite set of lattice points with small doubling property:

$$|\mathbb{L} + \mathbb{L}| < 3.5|\mathbb{L}| - 7. \tag{2.1}$$

(1) If $|\mathbb{L}| \geq 1344$, then the set \mathbb{L} lies on no more than three parallel lines. (2) If \mathbb{L} is not contained in any two parallel lines, then $\operatorname{conv}(\mathbb{L}) \cap \mathbb{Z}^2$ is included in three compatible arithmetic progressions having together no more than

$$v = |\mathbb{L}| + \frac{3}{4} \left(|\mathbb{L} + \mathbb{L}| - \frac{10}{3} |\mathbb{L}| + 5 \right) = \frac{3}{4} \left(|\mathbb{L} + \mathbb{L}| - 2|\mathbb{L}| + 5 \right)$$
(2.2)

terms.

Assertion (1) of Theorem 1 is a partial case of Theorem C, for s = 3. We shall reformulate our main result and prove that the new formulation implies assertion (2) of Theorem 1. We need some definitions. Let $\mathbb{K} \subseteq \mathbb{Z}^2$ be a finite set of lattice points that lies on three parallel lines:

$$\mathbb{K} = \mathbb{K}_1 \cup \mathbb{K}_2 \cup \mathbb{K}_3, \\ \mathbb{K}_1 \subseteq (x_2 = 0), \ \mathbb{K}_2 \subseteq (x_2 = 1), \ \mathbb{K}_3 \subseteq (x_2 = h), \ h \ge 2.$$
(2.3)

Let the set of abscissae of \mathbb{K}_i be respectively equal to K_i and denote $d_i = d(K_i)$. Put

 $\mathbb{K}^* = \operatorname{conv}(\mathbb{K}) \cap \mathbb{Z}^2, \ k = |K|, \ k^* = |\mathbb{K}^*|$ (2.4)

and

$$d(\mathbb{K}) = \gcd(d_1, d_2, d_3).$$
(2.5)

Such a finite set of \mathbb{Z}^2 is called a *reduced set of lattice points*, if h = 2 and $d(\mathbb{K}) = 1$.

We would like to note at this point that this definition may be formulated in an obvious way, for sets that lie on $s \ge 2$ parallel lines. In this paper, however, a reduced set of lattice points will always be a set that lies on three parallel lines.

Theorem 2. — Let $\mathbb{K} \subseteq \mathbb{Z}^2$ be a reduced set of lattice points. If $|2\mathbb{K}| < 3.5|\mathbb{K}| - 7$, then

$$k^* := |\operatorname{conv}(\mathbb{K}) \cap \mathbb{Z}^2| \le |\mathbb{K}| + \frac{3}{4} \left(|2\mathbb{K}| - \frac{10}{3}|\mathbb{K}| + 5 \right) = \frac{3}{4} \left(|2\mathbb{K}| - 2|\mathbb{K}| + 5 \right).$$

Proof of case (2) of Theorem 1, assuming Theorem 2. — Since \mathbb{L} lies on three parallel lines, there is an affine isomorphism of the plane which maps \mathbb{L} onto a set \mathbb{K} such that

(i) K lies on $(x_2 = 0)$, $(x_2 = 1)$, $(x_3 = h)$, $h \ge 2$,

(ii) $m_1 = m_2 = 0$, where we put $m_i = \min(K_i)$, for i = 1, 2, 3.

Since the function $|2\mathbb{L}|$ is an affine invariant of the set \mathbb{L} , we see that

$$|2\mathbb{K}| = |2\mathbb{L}| < 3.5|\mathbb{L}| - 7 = 3.5|\mathbb{K}| - 7.$$
(2.6)

Denote $d = d(\mathbb{K})$. Remark that, thanks to the small doubling property (2.6) one has

$$h = 2 \text{ and } m_1 + m_3 \equiv 2m_2 \pmod{d}.$$
 (2.7)

Indeed, if h > 2, then $(\mathbb{K}_1 + \mathbb{K}_3) \cap 2\mathbb{K}_2 = \emptyset$ and thus

$$\begin{aligned} |2\mathbb{K}| &\geq |2K_1| + |K_1 + K_2| + |K_1 + K_3| + |2K_2| + |K_2 + K_3| + |2K_3| \\ &\geq (2k_1 - 1) + (k_1 + k_2 - 1) + (k_1 + k_3 - 1) \\ &+ (2k_2 - 1) + (k_2 + k_3 - 1) + (2k_3 - 1) \\ &= 4k - 6 \geq 3.5k - 7. \end{aligned}$$

$$(2.8)$$

In the same way, if $m_1 + m_3 \not\equiv 2m_2 \pmod{d}$, then for $x \in K_1$; $y', y'' \in K_2$, $z \in K_3$ we have $y' + y'' \equiv 2m_2 \not\equiv m_1 + m_3 = x + z \pmod{d}$. Thus, $(\mathbb{K}_1 + \mathbb{K}_3) \cap 2\mathbb{K}_2 = \emptyset$ is valid and (2.8) follows again.

Consequently, \mathbb{K} and \mathbb{L} are contained each in three equidistant compatible arithmetic progressions.

Equation (2.7) and (ii) ensure that $m_3 \equiv 2m_2 - m_1 = 0 \pmod{d}$. This yields $w \equiv 0 \pmod{d}$ for every $w \in K_1 \cup K_2 \cup K_3$. We can now easily check that the