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ON T H E S T R U C T U R E OF SETS OF LATTICE POINTS IN 
THE P L A N E W I T H A SMALL DOUBLING P R O P E R T Y 

by 

Yonutz V. Stanchescu 

Abstract — We describe the structure of sets of lattice points in the plane, having a 
small doubling property. Let K be a finite subset of Z2 such that 

|K + K| < 3.5|K| - 7 . 

If K lies on three parallel lines, then the convex hull of K is contained in three 
compatible arithmetic progressions with the same common difference, having together 
no more than 

|K| + 3 
4 

|K+K| - 10 
3 

|K| +5 

terms. I his upper bound is best possible. 

Notation 

We write [m,n] = {x £ Z\ m < x < n}. For any nonempty finite set K C R, 
K = {ui < U2 < - - - < Uk} we denote by k = \K\ the cardinality of K and by £(K) 
the length of K, that is the difference between its maximal and minimal elements. 
If K C Z and k > 2, by d(K) we denote the greatest common divisor of Ui — u±, 
1 < i < k. If Jfe = 1, we put d{K) = 0. Let h(K) = t{K) -\K\ + l denote the number 
of holes in K that is h(K) = | [ui,Uk] \ K\. 

Let A and B be two subsets of an abelian group (G,+). As usual, their sum is 
defined by A + B = {x E G | x = a + b, a G A, b e B} and we put 2A = A + A. 
The convex hull of a set § C R2 is denoted by conv(S). Vectors will be written in the 
form u = (ui,u2), where u\ and u2 are the coordinates with respect to the canonical 
basis ei = (1,0), e 2 = (0,1). 
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218 Y. STANCHESCU 

1. Introduction 
In additive number theory we usually ask what may be said about M + M, for a 

given set M. As a counterbalance to this direct approach, consider now the inverse 
problem: we study the properties of M, when some characteristic of M + M is given, 
for example, the cardinality of the sum set M + M. It was noticed by Freiman [Fl] 
that the assumption that \2M\ is small compared to |M|, implies strong restrictions on 
the structure of the set M. If \2M\ = 2\M\ - 1 and M Ç Z, then M is an arithmetic 
progression. If we choose bigger values for |2M|, the problem ceases to be trivial. 
The fundamental theorem of G.A. Freiman [F2] gives the structure of finite sets of 
integers with small doubling property: \2M\ < co|M|, where CQ is any given positive 
number. This theorem was proved using geometric methods of number theory and a 
modification of the method of trigonometric sums. Y. Bilu recently studied in [B] a 
case when CQ is a slowly growing function of |M|. The generalization to the case of 
different summands M + iV, with a new proof, is to be found in the paper of I.Z. Ruzsa 
[R] 

However, in the case of small values of the constant Co, elementary methods yield 
sharper results. Let K C Z 2 be a finite set of lattice points. Two cases have been 
studied by G. A. Freiman [Fl], pp.11, 28. 
Theorem A. — J/IK + KI < 3IKI - 3 , then 
(1) K lies on a straight line. 
(2) K is contained in an arithmetic progression of no more than v = IK+KI-IKI + l 
terms. 
Theorem B. — J/IK + KI < ±p|K| - 5 , |K| > 11 and K is not contained in a line, 
then 
(1 ) K lies on two parallel straight lines. 
(2) K is contained in two arithmetic progressions with the same common difference 
having together no more than v = |K + K| -2 |K| + 3 terms. 

The generalization of Theorems A(l) and B(l), to s lines, s > 3, was obtained in 
[S2]: 

Theorem C. — J/|K + K| < 4 - 2 
s- |K| - (2s + 1) and IKI > 16«(« + 1)(2« + 1), 

then there exist s parallel lines which cover the set K. 
A result which generalizes Theorems A(2) and B(2) was obtained in [S3]. 
Theorems A(l), B(l) and C cannot be sharpened by increasing the upper bound 

for |2K|. (see Example A in [S2].) Assertion (2) of Theorems A and B gives the 
precise structure theorem for 5 = 1 and s = 2. In [S 2] we obtained a sharpening 
of Theorem B(2) by giving the best possible value of the upper bound for |2K|, 
under the additional assumption that K lies on s = 2 parallel lines. We proved that 
Theorem B(2) is true, even we replace |2K| < ^ |K | - 5 by |2K| < 4|K| - 6. More 
precisely: 
Theorem S. — Let K C Z 2 be a finite set, which lies on the lines x<i = 0 and X2 = 1. 
Let the set of abscissae for x>2 = 0 and xi ~ 1, respectively be equal to A and B. 
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(l)If£(A)+£(B)<2\K\ - 5 , then (d(A),d(B)) = 1 and 

|2K| > (3|K| - 3) + h(A) + h(B) = (2IKI - l ) + * ( A ) + £ ( ß ) . 

^ ; / / € ( A ) + € ( B ) > 2 | K | - 4 and (d(A),d(B)) = 1, tòen |2K| > 4|K| - 6. 

It is not difficult to give examples to show that Theorems A(2), B(2) and Theorem S 
cannot be sharpened by reducing the quantity v or by increasing the upper bound for 
I2KI. (see Examples Bl and B2 of Section 3, [S2]) 

The present paper is devoted to the generalization of Theorem A(2) and S to the 
case of s = 3 parallel lines. Instead of condition |2K| < 3k — 3, of Theorem A and 
condition |2K| < ^-k — 5 of Theorem B, we study now a set K of integer points on a 
plane, with the following small doubling property 

|2K| < 3.5|K| - 7. 

Take a lattice C generated by K We wish to obtain an estimate for the number of 
points of C that lie in conv(K); we are interested in an upper bound of |£flconv(K)|. 
Some estimate of this number was obtained in [S2, Theorem C]. In this paper we shall 
give the best possible estimate for \C fl conv(K)|. The result implies an affirmative 
answer to a question of G.A. Freiman [F3] and generalizes previous results of [Fl] 
and [S2]. 

2. Main Result 

An arithmetic progression in Z 2 is a set of the form 

P = P(a, A) = {a, a + A, a + 2A, . . . , a + (p - 1)A}, 

where a, A G Z 2 and p = \P\ > 1. The vector A is called the common difference of 
the progression and a is the initial term . We say that Pi = Pi (a ,̂ A^), i = 1,2,3 are 
compatible arithmetic progressions, if Ai = A2 = A3 = A and a\ +03 = 2a2(mod A). 

Now we are ready to formulate our main result. 

Theorem 1. — Let L C Z 2 be a finite set of lattice points with small doubling property: 

IL + LI <3.5|3L| - 7 . (2.1) 

(1) If |L| > 1344, then the set L lies on no more than three parallel lines. 
(2) If h is not contained in any two parallel lines, then conv(L) fl Z 2 is included in 
three compatible arithmetic progressions having together no more than 

v = ILI + 
3 
4 

IL + LI - 10 
3 

LI + 5 = 
3 
4 

|L + L| - 2|L| + 5 (2.2) 

terms. 

Assertion (1) of Theorem 1 is a partial case of Theorem C, for s = 3. We shall 
reformulate our main result and prove that the new formulation implies assertion (2) 
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of Theorem 1. We need some definitions. Let K C Z 2 be a finite set of lattice points 
that lies on three parallel lines: 

K = Ki LHK2 UK3, 
Kx ç (x2 = 0), K2 Ç (x2 = 1), K3 C (x2 = h), h>2. (2.3) 

Let the set of abscissae of Ki be respectively equal to Ki and denote di = d(Ki). 
Put 

K* = conv(IK) n Z 2 , k = \K\, k* = |K* | (2.4) 

and 
d(K) = gcd(di,d 2,d 3). (2.5) 

Such a finite set of Z 2 is called a reduced set of lattice points, iî h = 2 and d(K) = 1. 
We would like to note at this point that this definition may be formulated in an 

obvious way, for sets that lie on s > 2 parallel lines. In this paper, however, a reduced 
set of lattice points will always be a set that lies on three parallel lines. 

Theorem 2. — Let K Ç Z 2 be a reduced set of lattice points. If |2K| < 3.5|K| — 77 

then 

Jfe* := |conv(3K) fi Z 2 | < |K| + 
3 
4 

I2KI -
10 
3 

|K| + 5 = 
3 
4 

I2KI — 2IKI + 5 

Proof of case (2) of Theorem 17 assuming Theorem 2. — Since L lies on three paral
lel lines, there is an affine isomorphism of the plane which maps L onto a set K such 
that 

(i) K lies on (x2 — 0), (x2 = 1), (#3 = /1), h > 2, 
(ii) mi = m2 = 0, where we put mz- = m.m(Ki), for i = 1, 2, 3. 
Since the function |2L| is an affine invariant of the set L, we see that 

|2K| = |2L| < 3.5|L| - 7 = 3.5|K| - 7. (2.6) 

Denote d = d(K). Remark that, thanks to the small doubling property (2.6) one has 

h = 2 and mi + rns = 2m2 (mod d). (2.7) 

Indeed, if h > 2, then (Ki + Ka ) n 2K2 = 0 and thus 

|2K| > \2Kt\ + \Ki + K2\ + \Ki + K3\ + \2K2\ + \K2 + K3\ + \2KZ\ 

> {2ki - 1) + (kt + k2 - 1) + (fci + *s - 1) 

+ (2k2 - 1) + (fca + k3 - 1) + (2ks - 1) 

= 4k - 6 > 3.5fc - 7. (2.8) 

In the same way, if mi + rrts ^ 2m2(modd), then for x G Ki^^y" € K2, z £ K% we 
have y' + y" = 2m 2 ^ mi + m 3 = x + ^(modd). Thus, (Ki + K3) D 2K2 = 0 is valid 
and (2.8) follows again. 

Consequently, K and L are contained each in three equidistant compatible arith
metic progressions. 

Equation (2.7) and (ii) ensure that m% = 2m2 — mi = 0(modd). This yields 
w = 0(modd) for every w G Ki U K2 U K^. We can now easily check that the 
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