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ON G R O U P S G E N E R A T E D BY A PAIR O F E L E M E N T S 
W I T H S M A L L T H I R D O R F O U R T H P O W E R 

by 

Sergei Brodsky 

Abstract. — The paper is devoted to an investigation of two-generated groups such 
that the m—th power of the generating pair contains less than 2m elements . It 
is proved, in particular, that if the cube of the generating pair contains less than 7 
elements or its fourth power contains less than 11 elements, then the group is solvable. 
Otherwise, it is not necessarily solvable- The proofs use computer calculations. 

1. Introduction 

Let G be a group. A finite subset M of G is called a set with small m—th power 
(m is some integer) if |Mm| < |M|m (here Mm = {ax... am|ai, . . . , am G M } and 
| . | denotes the cardinality of the set). The structure of the groups in which each 
p—element subset has a small m—th power (for some small p and m), as well as 
the structure of the set of all special elements was investigated in papers [1-5,7], 
among others. Notice that the notion of identification pattern, which is introduced 
in the present paper, is close to the notion "type of square" which was introduced in 
[3], but we will not discuss the relationship between these concepts. 

In this paper we are interested in the structure of groups generated by a two-
element set M = {a, b} with a small third and fourth power. The proofs are based on 
pure combinatorial considerations, and are ultimately reduced to enumerating a list 
of very concrete groups, unfortunately; the total number of cases which appear here 
is so large that we need to use a computer. All computer calculations were developed 
by the author on an IBM PC using self-made programs which were written in the 
frame-work of the mathematical package MATLAB-386 ^. These programs provide a 
simplification of finite group presentations using Tietze transformations, a calculation 
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of a commutator subgroups in the case of a finite index, and also recognition of 
groups of some types. The methods of programming are in some interest. Since their 
description would lead us too far from the topic of the present paper, the topic could 
be a subject of a separate publication. The results of the mentioned calculations are 
given in the Appendix. 

Acknowledgment — The author would like to thank Prof. Ya. Berkovich for the 
introduction into the subject of the investigations, as well as for useful discussions. 

Let us formulate a general combinatorial assertion which will be needed below. 
Let A be a finite set, 9 an equivalence relation on A, and R C A x A. We say that 
the equivalence relation 9 is generated by R, and write 6 = eq(R) if 9 is the least 
equivalence relation contaning R. The relation 9 will be called independent if 9 is the 
minimal generating relation for its closure eq(R). The following lemma can be easily 
proved using induction on \R\. 

Lemma 1. — Let 9 be an equivalence relation on the set A generated by a relation 
R C A x A, Then \A/0\ > \A\ — \R\. If, in addition, R is independent, then \A/9\ = 
\A\-\R\. 

2. Identification graphs and their properties 

Let G be a group generated by two elements a and b: G — gp(a, b). We fix a and b 
as signature constants and regard the group G as the quotient-group of the free group 
F — (a, b). The natural epimorphism # G ' F -» G defines an equivalence relation on 
the group F which will be denoted by the symbol 9Q~ We define H{G) as the normal 
closure of the element ab~x in G: H(G) = (a6_1)G, and set Ui = a%ba~%~x for each 
i G Z, so H = gp(ui\i G Z). For each element, or a subset P of iif(G), we let P^ 
denote the element (the subset) asPa~s; it is clear that P^ can be obtained from 
P by adding s to all indices of the ^-symbols. We also apply the same notation to 
elements and subsets of the Cartesian square HQ X HQ- (P, Q)^ — ( P ^ , Q ). Since 
|{a,6}m| = |{a,6}ma~m|, the condition |{a,6}m| = n < 2m (m > 2) is equivalent 
to the condition \Hm(G)\ = n where Hm(G) = {a, b}a~m. One can see that Hm(G) 
consists of values in G of all strictly increasing positive words in symbols UQ, ..., um-i: 

Hm{G) = {UH ...UIK 0 < ¿1 < • • • < ik < m - 1, 0 < k < m} C H(G). 

We denote by Um the set of all strictly increasing positive words in symbols uo,..., 
U m - i itself, so that ifm(F) = gp(C/m) and Hm(G) = g p ( $ G ( ^ m ) ) . 

For 5, T G Um we say that the pair (5, T) is an irreducible m-pair if exactly one 
of the words 5, T begins with UQ and exactly one of them ends with wm_i. If the 
irreducible m-pair e has the form (UQP3 Qum-x) we say that it is positive, otherwise e 
has the form (uoPum-iyQ) and in this case we say that e is negative. In both cases 
we define i(e) — P and t(e) = Q. The set of all positive irreducible m-pairs is denoted 
by J + and the set of all negative irreducible pairs is denoted as I~. 

For given R G C/m, let R be the word in symbols a and b which freely equals R; 
it is clear that R is a positive word of length m. We say that an irreducible m-pair 
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(5 , T) is degenerate if there exists some irreducible (m — l)-pair (P, Q) G 9Q such that 
one of the words P , Q is a sub word of one of the words S,T. The following lemma is 
obvious. 

Lemma 2. — Let $o = 9Q H (Um~i x Um-i) and let (5 , T) be a degenerate irreducible 

m-pair. Then (S , T) G 9 if and only if (5 , T ) G eq(<90 U 0^ U (90^m-i U u0e^). 

Let us now define the positive identification m-graph ]?+(G) of G as the oriented 
graph with the set of vertices H^l_2 and the set of edges E+(G) = ( $ G X #Gf ) ( I+N#a) , 
and the negative identification m-graph r ~ ( G ) of G as the graph with the same 
set of vertices and the set of edges E~(G) = ( # G X $G)(Im n OG)- The incidence 
relations in both these graphs are given by the following rule: if e G U E~ and 
e = ($G x $G)(€O)> where eo is some irreducible m-pair, then the initial vertex of e 
is #o(«(eo)) and the terminal vertex of e is $G(£(CO)) . 

The correctness of the last definition, as well as the validity of the following lemma, 
can be easily verified. 

Lemma 3. — Let G — gp(a, b) and m > 2. Then each vertex of the positive rn-
identification graph Fm(G), and each vertex of the negative m-identification graph 
Tm(G), has at most one incoming edge and at most one outgoing edge. 

For e G E+(G) U P ~ (G), we call e a degenerate edge if and only if the set (3>G X 
^ G ) " 1 ( ^ ) contains some degenerate irreducible pair. Lastly, let defm(G) denote the 
total number of nondegenerate edges in the set Em(G) U E~(G). 

Lemma 4. — Let G = gp(a, 6) and m > 2. Then 

defm(G) > -2™ - \Hm(G)\ + 4 |Pm_i (G) | . 

Proof. — Let d = 2m-1 - |Pm_i (G) | . Then, by Lemma 1, the trace 0O of the 
equivalence relation 9Q on the set t/m_i is generated by some relation RQ of car
dinality d. Since Tim x Um = (Um-i x (7m-i) U (L^Li x u£lx) U ( t /m-i^m-i x 
Um-iUm-i) U (^ot/m-i x ^o^m-i)? the trace # of the equivalence relation 9Q on 
the set Um can be represented as the union of their traces #o?0i>02?#3 on the sets 
Um-i, U^_1,Um-iUm-i,uoU^_1, respectively, and the relation (l£ UIQ) H0G - Each 
of the equivalence relations 9k (k = 1 ,2 ,3 ,4) is generated by a d-element relation 
(Po, RoUm-ij UORQ~\ respectively). The union P of last the four relations con
tains no more than 4d elements. By Lemma 2, the difference (IQ U IQ) fl 9Q \ eq(P) 
is contained in the set of all nondegenerate irreducible m-pairs from 9. Now let us 
define P i as the set which contains one # G X $ G pre-image of each nondegenerate 
edge from E+(G) U E~(G). Then 90 = eq(P U P i ) , and it only remains to apply 
Lemma 1. 

The inequality which was obtained in Lemma 4 provides us with good necessary 
conditions for a group to be generated by a pair with a small power. However, we need 
a more detailed version of this result which also includes some sufficient conditions. 
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Lemma 5. — Let G = gp(a, b) and i fm_i(G) > 2m_1 - 1 (m > 2) . Then 

defm(G) = - 2 m - |Hm(G)| + 4 | H m - ! ( G ) | . 

Proof. — Let Hm-i(G) — 2m_1. Preserving the notations which were introduced in 
the Proof of Lemma 4, we have here that R = 0 and R\ coinsides with E+(G) U 
Em(G). Lemma 3 asures us that the last relation is independent. By Lemma 1, the 
inequality of Lemma 4 becomes an exact equality. 

Let now Um__i (G) = 2rn~~1 — 1. In this case R consists of four pairs, and one can 
verify that it is independent. Repeating the previous argument, and bearing in mind 
that the definition of a nondegenerate edge provides the independence of the united 
relation Ri we again have an exact equality - instead of the inequality - in Lemma 4. 

The fact that the quotient group G/H(G) is cyclic reduces the investigation of the 
group G(T) to an investigation of the group H(G). The following lemma shows that 
in nontrivial situations this group is finitely generated. 

Lemma 6 — Let \Hm(G)\ < 2m. Then H(G) = gp(u0,..., tim_2). 

Proof. — If m = 1 then UQ = 1 and H = 1. Hence, we may assume that rn > 
2. Without loss of generality, we may also assume that \Hm-i(G)\ = 2m_1. By 
Lemma 4, def m (G) > 1, and thus there exists an irreducible m-pair (5 , T) such 
that G satisfies the equality S = T - implying that G also satisfies the equality 
S(i) — y»M for each i e Z . Therefore, for each i G Z, m G gp( t^_m+i , . . . ui-1 ) and 
ui G gp(w i + i j • • •ui+m-1 i ) - Now, using induction on i, one can prove that for each 

i e z , ^ G gpOo, • • •,Um-2)' 

It should be noted that in the case m = 2 Lemma 6 asserts that the group H is 
cyclic. (In fact, this assertion is obvious and well known). 

3 . Identification p a t t e r n s and their universal groups 

Let us consider a finite sequence T = {E^E^,..., Em1 Em) such that the set E^ 
of its positive k-edges and the set of E^ of its negative k-edges consist of positive 
and negative irreducible &-pairs, respectively (2 < k < m) . For each e G E^UE^ , we 
define the initial vertex of e as i(e) and the terminal vertex of e as t{e)\ so for each 
2 < k < rn we obtain two oriented graphs with the set of vertices Uk-2' the positive 
k-graph ofT which will be denoted by ( r ) £ , and the negative k-graph ofT which will 
be denoted by ( r ) ^ . We write e = ( ^ 1 , ^ 2 ) ^ (or e — ( ^ 1 ^ 2 ) ^ ) if e is a positive (or 
a negative) k-edge with the initial vertex w\ and the terminal vertex 1̂ 2 • If we need 
to describe any such sequence in a concrete situation, we do this by enumerating of 
its edges. Further, we consider the sequence of groups {Hk(T)\2 < k < m) which are 
defined in the set of generators {ui\i G Z } by the sets of relations [){7Zk(T)^\s G Z } , 
where nk(T) = {u0i(e) = t(e)up{l\\e G E£ U E~, 2 < p <k e{e) = 1 for e G E^ 
and e(e) — —1 for e G E~. For each of these groups, the natural epimorphism 
$r,k ' Uk -> Hk defines the equivalence relation on the group Uu which is denoted by 
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