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ON SMALL SUBSET PRODUCT IN A GROUP 

by 

Yahya Ould Hamidoune 

Abstract. — We generalise some known addition theorems to non abelian groups and 
to the most general case of relations having a transitive group of automorphisms. 

The classical proofs of addition theorems use local transformations due to Daven­
port, Dyson and Kempermann. We present a completely different method based on 
the study of some blocks of imprimitivity with respect to the automorphism group 
of a relation. 

Several addition theorems including the finite a -f /^-Theorem of Mann and a 
formula proved by Davenport and Lewis will be generalised to relations having a 
transitive group of automorphisms. 

We study the critical pair theory in the case of finite groups. We generalise Vosper 
Theorem to finite not necessarily abelian groups. 

Chowla, Mann and Straus obtained in 1959 a lower bound for the size of the image 
of a diagonal form on a prime field. This result was generalised by Tietavaienen to 
finite fields with odd characteristics. We use our results on the critical pair theory to 
generalise this lower bound to an arbitrary division ring. 

Our results apply to the superconnectivity problems in networks. In particular we 
show that a loopless Cayley graph with optimal connectivity has only trivial minimum 
cuts when the degree and the order are coprime. 

1. Introduction 

Let p be a prime number, and let A and B be two subsets of Zp , such that \A\, 
\B\ > 2. The Cauchy-Davenport Theorem states that 

|A + 5 | > m m ( p , L 4 | + L B | - l ) , 

cf. [2,5]. Vosper Theorem states that 

\A + B\ > m i n ( p - l , | A | + |B | ) , 

unless A and B form arithmetic progressions, cf. [31,32]. Freiman obtained a structure 
theorem for all A C Zp such that \2A\ < 12\A\/5 - 3, cf. [26]. 
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Let A and B be finite subsets of an abelian group G. We shall say that B a Cauchy 
subset if for every finite non-empty subset X, 

\X + B\ > m i n ( | G | , | X | + | £ | - l ) . 

Mann proved in [24] that B is a Gauchy subset if and only if for every finite subgroup 
if, \H+B\ > min(|G|;|jEf| + | B | - l ) . Kneser Theorem states that \A+B\ < \A\ + \B\-l 
only if there is a finite non-null subgroup H such that A + H + B = A + B. Some 
progress toward the determination of all pairs A, B such that |A + i?| < \A\ + — 1 
is obtained by Kempermann in [20]. In [14], we could classify all the pairs, {A,B} 
with \A + B\ = \A\ + |JB| - 1, if B is a Cauchy subset. 

Less results are know in the non-abelian case. The classical basic tools in this 
case are two nice results proved by Kempermann in [19]. No generalisation of Kneser 
Theorem is known in the non-abelian case. The natural one is false in general, cf. 
[28,33]. Diderrich obtained in [7] a generalisation of Kneser Theorem in the case where 
the elements of B commute. But this result is an easy corollary of Kneser Theorem 
as showed in [13]. Brailowski and Freiman obtained a Vosper Theorem in free torsion 
groups, cf. [1]. It was observed recently that some results involving the connectivity 
of Cayley graphs are strongly related to addition theorems. This connection will be 
explained below. 

A natural question consists of asking how addition Theorems generalise to a group 
acting on a set. The connectivity of Cayley graphs belongs to this kind of problems. 
The connectivity of a reflexive relation T = (V, E) is 

« ( r ) = min{|r(F)| - |F| : 1 < \T(F)\ < \V\}. 

Let B be a finite subset of a group G containing 1 and let T be the Cayley relation 
x~xy E B. In this case, K(T) is the best possible lower bound for | A B - 1 | — \A\, where 
AB ^ G. The Cauchy-Davenport Theorem may be expressed using this language as 
K(T) = \B\ — 1, for \G\ prime. Under this formulation, this result was rediscovered 
in [9]. The method used in [9] is based on the study of blocks of imprimitivity with 
respect to the group of automorphisms. The same method is used in [12] to prove a 
local generalisation of Mann Theorem for finite groups. Zemor used the same method 
in [33] to obtain a global one. More complicated blocks are studied in [14] to calculate 
the critical pairs in Mann Theorem in the abelian case. 

The connection between connectivity problems and addition theorems were ob­
served only recently. 

The results obtained in [14] are strongly based on the well known fact that an 
abelian Cayley relation is isomorphic to its reverse. We generalise some of the results 
to the non abelian case. The organisation of the paper is as follows. In section 2, 
we study the connectivity of relations. We give also lemmas allowing to translate 
connectivity bounds into addition theorems. We improve some results contained in 
[9,10,11,12,14]. In section 3, we generalise several basic additive inequalities. In 
particular, we give a generalisation of Mann Theorem to non-abelian groups and to 
relations with a transitive group of automorphisms. We generalise also a formula 
proved by Davenport and Lewis for finite fields to division rings and to arc-transitive 
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relations. We generalise also a result proved by Olson [27] to point transitive relations. 
This generalisation in the finite ease was proved in [10, Proposition 3.4]. In section 
4, we study the superatoms. They form the main tool for the critical pair problem in 
our approach. The main result of section 5 is the following result which characterizes 
the equality cases in Mann Theorem. We state it below. 

Let B be a subset of a finite group G such that 1 G B. Then the following conditions 
are equivalent. 

(i) For all Ac G such that 2 < \A\, 

\AB\ > m i n ( | G | - l , | A | + |B|). 

(ii) For every subgroup H of G and for every a G G such that \H U Ha\ > 2, 

min(\B(H U aH%\(H U Ha)B\) > min(|G| - 1, \H U Ha\ + \B\). 

The main result of section 6 is a critical pair theorem which generalises Vosper 
Theorem. We state it below. 

LetG be a finite group and letB be a Cauchy subset ofG such that (|G|, — 1) = 1. 
Let A C G such that 

\AB\ = \A\ + \B\ - 1 < \G\ - 1. 

Then one of the following conditions holds. 
(i) \A\ = 1 or A = G \ aB~x, for some a G G. 
(ii) There are a,b,r G G, fc,sGN such that 

A = {a, ar, a r 2 , . . . , ark~x} and B = (G\ (r)b) U {ò, rò , r2ò , . . . , r^b}. 

(iii) There are a, 6, r G G, k,s e~N such that 

A = {ab-\arb-\ar2b~\....ar^b"1} and B = (G\6(r))U{ò,rò,r26, . . . , rs"16}. 

One of the classical applications of the critical pair theory is the estimation of 
the range of a diagonal form. Using Vosper's Theorem, Chowla, Mann and Straus 
obtained in [4] an estimation of the range of a diagonal form over Zp. Tietavainen 
obtained in [30] the same bound in the case of finite fields with odd characteristics. 
We gave in [14] a proof for all finite fields based on the method of superatoms. We 
generalise this bound to all division rings in this paper as follows. 

Let R be a division ring and let P be a finite subset of R such that 0 G P and P\0 
is multiplicative subgroup. Let RQ be the additive subgroup generated by P. Suppose 
that \P\ > 4 and let a±, a,2,..., an be non-zero elements of R. Then 

\axP + a2P + • • • + anP\ > min(|iîo|, (2n - 1)(|P| - 1) + 1). 

In section 8, we apply our results to solve some problems raised in network Theory. 
We also explain the connections between Cayley graphs reliability and Additive group 
Theory. In particular we show that a loopless Cayley graph with optimal connectivity 
has only trivial minimum cuts when the degree and the order are coprime. 
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2. The connectivity of a relation 

In this section we study subsets with a small image with respect to a given relation. 
Restricted to Cayley relations defined on a group, this problem becomes the study of 
subsets with a small product. The results obtained in this section improve slightly 
our previous results obtained in [9,10,11,12,14]. 

The cardinality of a finite set V will be denoted by |V| . For an infinite set V, we 
write \V\ = oo. By a relation we mean an ordered pair T = (V,E), where V is a set 
and E is a subset of V x V. A permutation a of V is said to be an automorphism of T 
if E = {(a(x),a(y)) : (x,y) G E}. The group of automorphisms of T will be denoted 
by Aut( r ) . A relation will be called point transitive if its group of automorphisms acts 
transitively on V. Let A CV. The subrelation inducedon A is T[A] = (A1 ED(AxA)). 

We introduce some notations. Let T = (V, E) be a relation and let F be a subset 
of V. The image of F will be denoted by T(F). We recall that 

T(F) = {y G V : there is x G F such that (x,y) G E}. 

We write dr(F) = T(F) \ F and Sr(F) =V\(FU T(F)). The reference to T will 
be omitted when the meaning is clear from the context. In particular we shall write 
dp- (F) = d~(F) and Sr~ (F) = 6~(F). The degree of a point x G V is by definition 
dr(x) = | r (x ) | . A relation T is said to be locally finite if both T and T~ have only 
finite degrees. A relation r = (V, E) is said to be regular if T is locally finite and if 
all x,y G V, \T(x)\ = \T(y)\ and | r ~ ( x ) | = \T~(y)\. Let T be a regular relation. The 
degree of every point with respect to T will be called the degree of T and denoted by 
d(T). 

A relation T on a set V is said to be connected if T(A) <f. A for every finite proper 
subset A of V. A subset C of V is said to be connected if T[C] is connected. A block 
of F is a subset B of V such that for every automorphism / of F, either f(B) = B or 
f(B) n B = 0. 

The following remark is easy to show and well known. 

Remark2.a. — If T is regular and if V is finite then d(T) = d(T~). 

Let F be a reflexive relation on V. The connectivity of T is by definition: 

K(T) = min{|<9(F)| : 1 < |r(F)| < |V| or \F\ = 1} . 

The inequality 1 < | r ( F ) | < |V| is never satisfied if V x V = T. In the other cases, 

« ( r ) = m i n { | a ( F ) | : l < | r ( F ) | < | V | } . 

Remark 2.b. — The connectivity of a relation coincides with the connectivity of its 
reflexive closure. For this reason we restrict ourselves to reflexive relations. This 
choice simplifies the proofs and the notations. In some previous papers [9,10,11,12] 
we adopted the opposite choice, where a relation is assumed to be disjoint from its 
diagonal. These two choices are essentially equivalent. 

Lemma 2.1. — Let T be a locally finite reflexive relation. Then K(T) is the maximal 
k such that for every non-empty finite subset A, |r(^4)| > min(|V|, \A\ + k). 
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