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NEW RESULTS ON SUBSET MULTIPLICATION IN GROUPS 

by 

Marcel Herzog 

Abstract. — This paper presents results and open problems related to the following 
topics: group with deficient multiplication sub-tables, product bases in finite groups. 

In this paper, I would like to discuss several topics which deal with subset multi­
plication in groups. The topics are: 
(1) Deficient squares groups; 
(2) Squaring bounds in groups; 
(3) Deficient products in groups; 
(4) Product bases in finite groups. 
The paper will be concluded by a list of some related open problems. 

The letter G will always denote a group and the center of G will be denoted by 
Z(G). 

1. Deficient squares groups 

Let m be an integer and let M be an m-subset of G, i.e. M C G and \M\ = m. 
We say that M has the deficient square property if 

(1) \M2\:=\{xy\x,y€M}\<\M\2=m2. 

A group G has the deficient squares property for m (G £ DS(m) in short) if (1) holds 
for all m-subsets M of G. A group G has the deficient squares property (G E DS 
in short) if G € DS{m) for some integer m. If G is a finite group, then of course 
GeDS. 

The first mathematician to consider the DS(m) property was Gregory Freiman, 
who classified in [8] the D5(2)-groups and who collaborated with others in the clas­
sification of the D5(3)-groups (see [2] and [19]). It was Peter Neumann who raised 
the problem of classifying the DS-groups. During his visit to Australia in 1989 Peter 
Neumann proved that D5-groups belong to the family of finite-by-abelian-by-finite 
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groups [22]. In a recent paper, Patrizia Longobardi, Mereede Maj and myself com­
pletely characterized the DS-groups. We proved 

Theorem 1.1 (cf. [9]). — A group G G DS if and only if either G is nearly-dihedral 
or \G^\ is finite. 

Here a group G is called nearly-dihedral if it contains an abelian normal sub­
group H of finite index, such that each element of G acts on H by conjugation 
either as the identity automorphism or as the inverting automorphism. By G^ we 
mean (g2\g G G). Instead of requiring \G^\ to be finite, we could have required the 
finiteness of |{#2|# G G}\. Our proof relies on the above mentioned result of Peter 
Neumann, the proof of which was included in our paper by his permission. 

A group G is called central-by-finite or an FIZ-group if the center of G is of finite 
index in G. Clearly G G FIZ implies that G is a nearly-dihedral group and it 
follows by Theorem 1.1 that DS-groups are a generalization of FlZ-groups. In 1976, 
B.H.Neumann proved the following beautiful theorem: 

Theorem 1.2 (cf. [21]). — The group G G FIZ if and only if G does not contain an 
infinite independent subset. 

A subset M of G is called independent if xy = yx for x,y G M implies x — y. If 
G G FIZ, say \G : Z(G)\ = n, then clearly the size of an independent subset of G is 
bounded by n. The difficulty in Theorem 1.2 lies in proving the other direction of the 
theorem. 

Recently, Carlo Scoppola and myself characterized the D5-groups in the spirit of 
the B.H.Neumann's result. Call a subset M of G fully-independent if uv = yz for 
u,v,y, z G M implies u = y and v = z. We proved 

Theorem 1.3 (cf. [11]). — The group G G DS if and only if G does not contain an 
infinite fully-independent subset. 

Again, one direction of the theorem is trivial, since the existence of an infinite fully-
independent subset in G clearly implies that G £ DS. In our proof of the opposite 
direction, the following result of Babai-Sos [1,Proposition 8.1] was very useful: 

Theorem 1.4 (cf. [1]). — If U is an infinite subset of the group G, then U contains 
an infinite subset V such that: if u,v,y,z G V and > 3? then uv 7̂  yz. 

The only non-trivial relations allowed in V by Theorem 1.4 are xy = yx and 
x2 = y2. Thus, if G ^ DS, in order to construct an infinite fully-independent subset 
of G it suffices to construct an infinite subset U of G satisfying: xy / yx and x2 ^ y2 
for x,y G U, x ^ y. By Theorem 1.4 U contains an infinite fully-independent subset 
of G. 

2. Squaring bounds in groups 

Of course, we can require from G more than the Z)5-property, i.e. not only \M2\ < 
\M\2 for all m-subsets, but some stronger inequality. Such questions were considered 
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by Leonid Brailovsky in his Ph.D. thesis, written under the supervision of G. Freiman 
and myself. L. Brailovsky proved, among other results, the following 

Theorem 2.1 (cf. [6]). — The group G € FIZ if and only if there exists a positive 
integer k, such that 

\K2\<k2 -k 

for each k-subset K of G. 

I want to prove one direction of Theorem 2.1. The other direction is easy too, but 
a bit more technical. 

I'll prove: If k is an integer and G FIZ then \K2\ > k2 — k for some ^-subset K 
of G. 

By Theorem 1.2, there exists an infinite independent subset U of G and by The­
orem 1.4, U contains an infinite subset V such that uv ^ yz for u,v,y,z E V with 
|{t£,v,y,z}\ > 3. Thus, if i f is a fc-subset of V, then the only non-trivial equalities 
among the elements of K2 are of the type x2 = y2, thus yielding 

\K2\ > k2 - (k-l) > k2 - k. 

The proof is complete. 
Suppose now that G is an abelian group. Then clearly 

(2) \K2\ < 
1 

2 
k(k + 1) for ^-subsets K of G. 

Does this property characterize the abelian groups? Generally speaking, the answer is 
NO. For k = 1, the inequality (2) always holds and for k — 2, the groups G = <2s x E 
satisfy (2), where Q$ is the quaternion group of order 8 and E denotes an elementary 
abelian 2-group, finite or infinite. Moreover, if G is finite and \k{k + 1) > |G|, then 
again (2) is trivially satisfied. But for the majority of cases, the answer is YES. More 
precisely, Leonid Brailovsky proved in his thesis 

Theorem 2.2 (cf. [4]). — If k > 2 is an integer and G is an infinite group, then (2) 
implies that G is abelian. In the finite case the same is true provided that k3 — k < 
1|G|. 

Theorem 2.2 also holds if the bound ~k(k + 1) in (2) is increased to \k(k + 1) + 
1 (k - 3), but then in the finite case we must require that (k2 — 3)(k — 1) < ^\G\ (see 

[5])-
In the infinite case much more can be proved. We define the integral valued function 

of an integral variable 

/ ( " ) = 
5n2 - 3n - 2 

6 

where \x~\ for a real x denotes the smallest integer m such that x < m. In his thesis, 
L.Brailovsky proved: 

Theorem 2.3 (cf. [6]). — Let k > 2 be an integer. Then: 

1 : If \K2\ < f(k) for all k-subsets K of an infinite group G, then G is abelian. 
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2 : There exists a non-abelian infinite group G such that \K2\ < f(k) 4- 1 for all 
k-subsets K of G. 

So f(n) is the best possible squaring bound for infinite abelian groups. Moreover, 

there is a gap between l 
2 

fc(fc + l ) and 5k2 - 3k - 2 
6 

1. Each infinite abelian group satisfies 

\K2\< 1 
2 

k(k + 1) for all fc-subsets, whereas for infinite non-abelian groups the bound 

for \K2\ on all fc-subsets is larger than 5fc2-3fc-2 
6 

3. Deficient products in gr0ups 

Let n be a positive integer. We say that G has the deficient products property for n 
(G G DP{n) in short) if for all couples of n-sets X and Y in G the following inequality 
holds: 

(3) \XYUYX\ < 2n2 . 

More generally, if k is an integer with k > 2, we say that G G DF(n , k) if all fc-tuples 
Xi, X2,. • . , Xk of n-sets in G satisfy 

(4) UP(XU ...,Xk) =def I U {XiXj\l <ij<k9i^ j}\ < (k2 - k)n2 . 

Thus DP(n) = D P ( n , 2 ) . Finally, we say that G G DP if G G DP(n,k) for some 
positive integers n, fc, k > 2. 

In a recent paper, Federico Menegazzo from Padova and myself proved the following 
results concerning groups satisfying the various conditions which were introduced 
above. 

Theorem 3.1 (cf. [10]). — Let G be an infinite group. Then G G DP{n) if and only 
if G is abelian. 

This theorem follows easily from the following characterization of infinite non-
abelian groups. First a definition: two subsets A and B of G are product-independent 
if whenever a, a' G A and 6, b' G B, then ab ^ b'a' and ab = a'b' or 6a = b'a! only if 
a — a' and b = b'. 

Theorem 3.2 (cf. [10]). — Let G be an infinite group. Then G is non-abelian if and 
only if it contains two infinite product-independent subsets. 

Theorem 3.1 generalizes Theorem B of [17]. We proved also the following charac­
terization of FJZ-groups. 

Theorem 3.3 (cf. [10]). — Let G be an infinite group. Then G contains Ho mutually 
product-independent infinite subsets if and only if G £ FIZ. 

The characterization of infinite DP-groups is an easy consequence of Theorem 3.3. 

Theorem 3.4 (cf. [10]). — Let G be an infinite group. Then G G DP if and only if 
G G FIZ. 
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