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SUBSET SUMS AND CODING THEORY 

by 

G é r a r d C o h e n & Gi l les Z é m o r 

Abstract — We study some additive problems in the group (Z/2l)r - Our PurPose 
is to show how those problems are closely related to coding theory. We present some 
relevant classical coding techniques and make use of them to obtain some original 
contributions. 

1. Introduction 

Let G denote the group Fr where F = { 0 , 1 } stands for the additive group with 
two elements. Let 5 be a generating set o f G. For any positive integer i, denote by 
5* the set o f sums of i distinct elements of S. Set S° = { 0 } and for any set I o f 
non-negative integers, let S1 = Ui^jS1. Let us denote by p(S) the smallest integer t 
such that any element o f G can be expressed as a sum of t or less elements of 5 , i.e. 
such that 

G = SW. 
Let us denote by d(S) the smallest integer i such that 0 can be expressed as a sum of 
i distinct elements o f 5 , i.e. let d(S) — 1 be the largest t such that 

0gS[1'*] . 

W e wish to focus on the following 1 additive' problems. 

Problem 1. — For given r and t, find the smallest s such that \S\ > s implies p(S) < t. 

Problem 2. — For given r and t, find the largest s such that \S\ < s implies p(S) > t. 

Problem 3. — For given r and d, find the smallest s such that \S\ > s implies d(S) < 
d. 
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328 GÉRARD COHEN & GILLES ZÉMOR 

Those three problems can be expressed as problems in coding theory. Indeed, 
problems 2 and 3 are classical coding problems o f which we shall give a short self-
contained presentation for the non specialist. P roblem 1, although less known to 
coding theorists, is also amenable to coding techniques, and we shall present original 
contributions to it and also to the following generalisation o f problem 3. 

Problem 4. — Given r and an arbitrary set of integers I, find the smallest s such that 
\S\ > s implies 0 G S1. 

2. Coding-theoret ic formulation of problems 1-4 

W h a t coding theorists call a (binary) linear code o f length n is simply a subspace 
of the vector space Fn. Let S be a generating set o f Fr with | 5 | = n. There is an 
important linear code C(S) associated to S whose coding-theoretic properties reflect 
the additive properties of 5 . T o obtain it let si,..., sn be any ordering o f its elements 
that we shall write as column vectors. Consider the r x n matrix H = [s\ . . . sn] and 
the associated function 

a : Fn G = Fr 
x = (# i ...xn) a(x) = H*x 

Define C(S) t o be the set o f vectors x of Fn such that <J(X) = 0. W h e n defining such a 
code C(S) associated to a set S we shall usually not specify which ordering si,...,sn 
we are choosing because the properties o f C(S) that interest us are independent of 
it. T o help distinguish between the two structures G = Fr and Fn, we shall use plain 
letters to denote elements o f G and bo ld letters to denote vectors of Fn: furthermore, 
since the vector space structure of Fn will be used rather more heavily than that of 
G, we shall systematically refer to elements of Fn as vectors. C(S) (or simply C when 
there is little ambiguity) is a subspace of Fn o f dimension k = n — r. Its elements 
are referred t o as codewords. H is called a parity-check matrix o f C , and for any 
vector x € Fn, cr(x) is called the syndrome of x . T w o vectors x = (x\ . . . xn) and 
y = (yi.. .yn) of Fn are said to be orthogonal if 

n 

1=1 

Xiyi = 0 

where computat ions are performed in F. If C is a linear code o f Fn o f dimension fc, 
then the set C x o f vectors or thogonal to C is a linear code of dimension n — k. Any 
matrix H whose rows are independent vectors orthogonal to C make up a parity-check 
matrix o f C. 

Remark. — Not every code C need be a code C(S) for some set S. This is because 
not every code has a parity-check matrix with distinct columns. 

Coding theorists regard Fn as a metric space, i.e. endowed with the Hamming 

distance d( •) : 
p n x pnpn x pnpn x pn [0,n] 

pn x pn pn x pn 
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where d (x ,y ) is defined as the number of coordinates where x and y differ. The 

minimum distance d(C) of a code C is the smallest distance between a pair o f distinct 

codewords , 

d(C) = m m 
x,y€C 

d (x ,y ) . 

Note that d(C) is also the minimum distance d(x, 0) between the 0 vector and any 

non-zero codeword x : this is because d(-, •) is invariant by translation and C is an 

additive subgroup. The integer d(x, 0) is called the weight of x and denoted by iu (x) . 

T h e classical parameters of a linear code C are usually denoted by [n, d\ and refer 

respectively to its length, dimension and minimum distance. 

Another classical parameter of a code C is its covering radius p(C): it is the 

maximum distance between a vector of Fn and the code C , i.e. 

p(C) = max 
xGF" 

d ( x , C ) 

where d(x, C) = minc€c d(x, c). 

Given a vector x = (x i . . .xn) of Fn, it is c o m m o n to define its support by 

supp(x) — {i^xi = 1 } . The syndrome of x can therefore be written as 

a(x) = 
i€supp(it) 

Si 

where the sum is computed in Fr. It is now clear that the minimum distance of C 

equals the minimum cardinality of a subset I of S such that X^eiSi ~ ®- ^n particular 

we have : 

Remark. — For any code C, there exists a set S not containing 0 such that C = C(S) 
if and only if d(C) > 3. 

Similarly, it is readily checked that the covering radius of C is the smallest number 

of additions necessary to generate every non-zero element of Fr with elements of 5 . 

Summarizing, 

Proposition 2.1. — The correspondence S -> C(S) is such that 

d(S) = d(C(S)) 

P(S) = P(C(S)). 

The above correspondence transforms problems o f an additive nature into packing 

and covering problems in a metric space. In particular, we see that problem 3 is 

equivalent to the fundamental problem of coding theory, namely determine the largest 

possible minimum distance o f a linear code of length n and dimension k. There are 

several classical bounds relating n, k and d. Let us mention two simple bounds that 

we shall make use of later on. 

Proposition 2.2 (Hamming bound). — Any [n, n — r, d] code satisfies 

L(d-1)/2J 

¿=0 

n 

i 
< 2r. 
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Proof. — Since any vector x G Fn o f weight < d — 1 satisfies a (x) ^ 0, then all 
vectors with weight at most [(d — 1)/2J must have distinct syndromes. 

Using classical estimates for binomial coefficients, the Hamming bound states, 
asymptotically, that any [n, n i? , nô] code satisfies 

(1) R < 1 - ft(<*/2) + o(l) 

where h(x) = —x log2 x — (1 — x) l og2( l — x) denotes the binary entropy function. 

Proposition 2.3 (Varshamov-Gilbert bound). — Let n andr be given. There exists an 
[n, n — r, d] code whenever 

w=1 

i=0 

n - r 
i 

<2r. 

Proof. — W e construct inductively a parity-check matrix of such a code . Suppose 
constructed a n r x i matrix Hi such that any d—1 columns are linearly independent. 
They are at most Ni distinct linear combinations of columns involving at most d — 2 

terms, with 

Ni = 
d-2 

x pn 

) 
) . 

If Ni < 2r — 1, then a nonzero element of G = Fr can be added to the set of columns 
of Hi to yield an r x (i + 1) matrix H i + i with the property that any d — 1 of its 
columns are linearly independent ; equivalently H^+i is the parity-check matrix of a 
code of minimal distance > d. 

Asymptotical ly, the Varshamov-Gilbert bound reads: there exist [n, n i? , nd] codes 
with 

(2) R > l - / i ( ( 5 ) + o ( l ) . 

There is no known better asymptot ic lower bound on R = k/n. Let us just mention 
the most powerful upper bound on R due to McEliece, Rodemich , Rumsey, and Welch 
(see e.g. [10]) for a p roo f ) : 

Proposition 2.4. — Any [n, ni2, nö] code satisfies 

(3) R < h 
1 
2 = 

[n, ni2, nö + o( l ) . 

Note that the Varshamov-Gilbert bound is not really constructive (the complexit; 
of constructing a parity-check matrix for such codes is exponential in the length n) 
There are no known constructions of codes achieving the Varshamov-Gilbert boun< 
for growing n and fixed i? , 0 < R < 1. There are, however, g o o d constructions c 
codes with fixed d and growing n. W e give a very short presentation of such codes 
to which we shall refer later on . 
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