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ON BOUNDS FOR THE CONCENTRATION FUNCTION. 1 

by 

Jean-Marc Deshouillers, Gregory A. Freiman & Alexander A. Yudin 

Abstract. — We give an upper bound for the concentration function of a sum of 
independent identically distributed integral valued random variables in terms of a 
lower bound for their tail, under the necessary extra condition that the random 
variables are not essentially supported in a proper arithmetic progression. 

1. Introduction 

Let Xi,..., Xk,. · · be independent real random variables and Sn 

n 

k=l 
Xk It is 

well known that, in general, the distribution of Sn spreads out as n grows. When all 
the -XV s are square-integrable, the relation a2(Sn) n 

k=l 
<r2{Xk) is a way to express 

this fact. In the general case, Doeblin and Levy [2] were the first to measure this 
phenomenon in terms of concentration functions. The concentration function of a real 
random variable X is defined by 

Q(X;X) supP 
t 

t X t + x for A 0 

The results of Doeblin and Levy have been successively improved by Kolmogorov [6], 
Rogozin [12] and Kesten [5]. Let us quote a corollary to Kesten's result, for the case 
when the X&'s are identically distributed. 

Theorem (Kesten [5], Corollary 1, p. 134)). — There exists an absolute constant C such 
that for any set of independent identically distributed random variables X\,..., Xn 
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and any 0 • 2L we have 

(1.1) Q{Sn;L) C 
l 

A 

Q(Xi;L) 

n l-Q(Xi;\) 

Let us consider the case when the -XV s follow a Cauchy law C(l) , where the Cauchy 
law C(a) with parameter a > 0 has density a/(^{t2 + a 2 ) ) . One readily sees that for 
L — 1 and 0 < A < 2, the right hand side of (1.1) has order of magnitude ( A ^ n ) - 1 

and is never o(l /y / n). However, the random variable Sn follows the law C(n), and so 

Q(S»;l) 
2 
7T 

arctan 
1 

2n 

1 

717T 
l + o(l) 

The dispersion (in the standard sense) of 5 n is due to the dispersion of the X^'s 
themselves; but the dispersion of the -XVs is not reflected in a small concentration 
Q(Xi;X) for small A's, but indeed for large A's: the law of X\ has a large tail, as can 
be seen from the fact that X\ is not integrable. 

A connection between the moments of the Xk's and the concentration of their sums 
has been provided by Esséen [3], who proves that the integrability of \X\\r for some 
0 < r < 2 implies the lower bound 

Q(Sn;L) K(r)L L + ( n / x r )
1 / r i 

where ixr — inf E{\X\ — a\r) and K(r) is an explicitly given expression that only 
a 

depends on r. 
We aim at giving an upper bound for the concentration function of Sn in terms 

of the tail of the distribution of the Xfe's. There is however a difficulty that will be 
better seen on discrete random variables. Let us consider an integer q > 1 and two 
integral valued random variables X% and X[ such that 

P Xi = 0 P x[ = o; 1/2 

P X[=l P xx = e/q 0 when q divides £, 

0 otherwise . 

We clearly have Q(X\; 1) = Q(X[; 1) = 1/2 and the tail of the distribution of X[ is 
heavier than that of X\. However, if we consider two sets X\,..., Xn and X[,..., X'n 

of n independent identically distributed random variables, their sums Sn and S'n are 
such that Q(Sn; 1) = Q(S'n; 1); we have indeed P{Sn = N} = P{S'n = qN} and so 

Q(Sn;l) maxP 
N 

Sn = N max F 
M 

S'n = M Q(S'n;l) 

We give in this paper an upper bound for the concentration function of a sum of 
independent identically distributed integral valued random variables in terms of the 
measure of their tail, under the assumption that the support of the random variables 
is not essentially contained in a proper arithmetic progression. 

Theorem 1. Let log 4 
log3 a 2, E 0, A 1 and a 0 be given real numbers. 

Let n be a positive integer and X\,..., Xn a set of independent identically distributed 
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integral valued random variables such that 

(1.2) maxg>2 maxs mod q >£=s(mod q) 
p Xx=i 1 - £ 

(1.3) ML A Q(Xi;L) 1 - aL~" 

Then we have 

(1.4) Q(Sn;l) cn-1/o 

where c depends on o,e,A and a at most. 

The main aim of this paper being to illustrate the use of inverse additive results to 
probability theory, we kept the statement and proof of our main result as simple as 
possible. We have thus restricted our attention to integral valued random variables, 
have not considered the general case when 0 < a < 2, and have not made explicit 
the dependence of c on the parameters £, A and a. Let us simply notice here that 
Theorem 1 is valid under the condition 1 < a < 2: this depends on the fact that, 
under iterated applications of Lemma 3, the constant Sk that arise may be improved 
to (4 — e) f c, an observation which is basically due to Lev. However, when a < 1, 
new phenomena enter the matter (generalized arithmetic progressions); we shall soon 
return to this topic. 

The statement of Theorem 1 becomes false if condition (1.2) is suppressed. Of 
course, if the constant c in (1.4) is allowed to depend on the law of Xi , then condition 
(1.2) is no longer necessary. 

The proof of this theorem may be summarized as follows. The concentration 
Q(Sn; 1) is majorized by the mean value of the modulus of the characteristic function 
of 5 n ; this latter is the n-th power of that of Xi , which we call cp, so that the prob­
lem reduces to the study of the large values of <p. Here we use two ideas that have 
been introduced by Preiman, Moskvin and Yudin in [4] in the context of local limit 
theorems. The first one, which can be seen as a consequence of Bochner's theorem, 
is that (p(ti 4- t2) is large as soon as both (f(ti) and ^(¿2) are large. The second one 
comes from the structure theory of set addition: either the set E of the arguments 
of the large values of (p is small, or it has a structure. In the first case, ip cannot 
be too large, and so we get (1.4). It remains to exclude the second case; were it to 
occur, then, as we shall see, either E would contain the vertices of a regular polygon, 
which would violate (1.2), or it would contain a large interval around 0, which would 
contradict (1.3). 

Problems of estimating the measure of the set of large values of the characteristic 
function have also been studied by Arak and Zaitsev [1]. This gave them the possibil­
ity to solve a famous problem of Kolmogorov on the estimation of the approximation 
of the n-th convolution of any probability distribution by that of an infinitely divisible 
law. 

As a warm up, and in order to introduce some tools and techniques, we devote the 
second paragraph to prove a special case of the Doeblin-Levy-Kolmogorov-Rogozin-
Kesten (DLKRK) inequality which stems from the same ideas and follows [10], [11]. 

The interested reader will find questions of a similar flavour in the classical mono­
graphs by Petrov [9] and the more recent one by Ledoux and Talagrand [7]. 
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2. A DLKRK inequality for discrete random variables 

Theorem 2 (DLKRK). — Let X\,..., Xn be independent identically distributed inte­
gral valued random variables, and let Sn be their sum and p = max P{ J i = N}. For 

every integer N, we have 

P Sn N 40 P 

n l-p 

Let us start by giving some notation that will be used in this paragraph and the 
next. We let 

P£ P Xi £ for any £ € Z 

<p(t) 
lEZ 

Pi exp(2irit£) for t E T = E/Z 

E(0) t e T <p(t) COS 6 for 0 e TT/2 

0* be such that coso* = min \(p(t)\ and 0 < 6* < TT/2 

The proof of Theorem 2 will be based on the following two results, for the first of 
which we give a sketch of a proof. 

Lemma 1 (cf. [4]). For 0i 0, 02 0 and 0i + 02 TV 
2 

we have 

E{01)+E{02) E{0x+02) 

Proof. — For j = 1,2, we consider tj in E(0j), and let = argt</?(tJ) and Xj = 
• <P(*3-i) 2g — iocj We use the Cauchy inequality to get an upper bound on 

|Ai<p(*i) A2</?(-£2) 2 

£ 
P£ Ai •pee2"utl A2 

fP£e 2iriU2' 
2 

Lemma 2 (Macbeath-Kneser Theorem, cf. [8], p. 13-14). — Let E\ and E2 be two non­
empty closed sets inT. We have 

Ei 4- E2 min 1 Ex E2 

where A represents the Haar measure of A inT. 

Proof of Theorem 2. — We may of course assume that p is strictly less that 1 and so 
0* is strictly positive. Our first task is to show that 

(2.1) E(9) 12 
6p 

l-p 
for e e 0, 0 7 2 

and 

(2.2) E(0) P, cos2 9. for 0€]O, 7T 
2 
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