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STRUCTURE OF SETS WITH SMALL SUMSET 

by 

Yuri Bilu 

Abstract. — Freiman proved that a finite set of integers K satisfying \K~\- K\ < <r\K\ 
is a subset of a "small" m-dimensional arithmetical progression, where m < [a — 
l j . We give a complete self-contained exposition of this result, together with some 
refinements, and explicitly compute the constants involved. 

1. Introduction 

This is an exposition of the fundamental theorem due to G. A. Freiman on the 
addition of finite sets. (It will be referred to as Main theorem). Let K be a finite 
set of integers (more generally, a finite subset of a torsion-free abelian group) of 
cardinality k. The Main Theorem states that if the sumset K -f- K is "small", then K 
possesses a rigid structure. An example of a statement of this type is the following 

Proposition 1.1 
(i) Any K satisfies \K + K\ > 2k — 1 and the equality \K 4- K\ — 2k — 1 implies 

that K is an arithmetical progression . 
(ii) Assume that \K + K\ — 2k — l-\-t, where 0 < t < k — 3. Then K is a subset of 

an arithmetical progression of length k + t. 
(iii) Assume that \K + K\ = 3fc — 3 and k > 7. Then either K is a subset of an 

arithmetical progression of length 2k — 1, or K is a union of two arithmetical 
progressions with the same difference. 

Here (i) is trivial, for (ii) and (iii) see [12, Theorems 1.9 and 1.11], where the result 
is obtained for subsets of integers. The case of subsets of an arbitrary torsion-free 
abelian group follows from [12, Lemma 1.14], which is Lemma 4.3 of the present 
paper. 

Let us deviate for a while from our main subject, and make a short (and very 
incomplete) historical account. Item (i) easily generalizes to distinct summands: if K 
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and L are finite subsets of a torsion-free abelian group, then \K+L\ > \K\ + \L\ — 1, and 
the equality \K + L\ — \K\ + \L\ — 1 implies that K and L are arithmetical progressions 
with the same difference. Preiman [10] extended item (ii) to two distinct summands; 
see also [15, 23, 32, 35]. An important generalization to several (equal or distinct) 
summands was obtained by Lev [22]. Concerning item (iii) see also Hamidoune [17]. 

Item (i) extends to torsion-free non-abelian groups (Brailovski and Preiman [4]). It 
also has an analogue for cyclic groups of prime order (Cauchy [6], Davenport [7, 8], 
Vosper [36]). Hamidoune [16] gave short and conceptual proofs of the theorems 
of Brailovski-Freiman and Vosper. For general finite (abelian and/or non-abelian) 
groups see [20, 18, 37, 38]. However, we do not know non-commutative analogues 
of items (ii) and (iii), and we know only partial analogues of these items for cyclic 
groups of prime order [11, 12, 2]. 

The first part of item (i) has various continuous analogues, for instance for con
nected unimodular locally compact groups [19, 29]. Item (ii) has a partial analogue 
for real tori [1]. 

Many of the results mentioned above are proved in the books of Mann [24] and 
Nathanson [26], where the reader can also find further references. 

The Main Theorem, however, develops Proposition 1.1 in a completely different 
direction. Reformulate item (ii) as follows: 

Let a < 3 be a positive number. Assume that \K + K\ < ok and k > 3/(3 — a). Then 
K is a subset of an arithmetical progression of length (a — l)k + 1. 

The Main Theorem extends this to arbitrary cr, without the restriction a < 3. To 
formulate it, we need some definitions. Let A, B be abelian groups, K C A and 
L C B. The map <p : K —> L is Freiman's homomorphism of order s or, in the 
terminology of [28], Fs-homomorphism, if for any x\,..., xs, t / i , . . . , ys 6 K we have 

xi-\ ...+ xs = i/i H h y8 (p(xi) + * • • + (p(xs) = (p(yt) + • • • + (p(ys) 

In the other words, the map 

Y : 
s 

K + .-- + K 
x\ H h xs 

s 
L -\ h i / , 

y?(xi) H + <p(x8) 

is well-defined. The Fs-homomorphism (p is an Fs-isomorphism if it is invertible and 
the inverse cp~1 is also an Fs-homomorphism; in other words, when both the maps (p 
and ij) are invertible. (In particular, F\-isomorphism is a synonym to bijection.) 

It is easy to find an Fs-isomorphism not induced by a group-theoretic homomor
phism A -» B. A typical example is the map 

{ 0 , a , . . . , ( f c - l ) a } { 0 , . . . , * - ! } , 
xa x, 

where a generates an additive cyclic group of order p > (k — l)s. 
A generalized arithmetical progression (further progression) of rank m in an abelian 

group A is a set of the form 

P = P(x0;xi1... , # m ; 6 i , . . . ,6m) = {xo + PiXi H h f3mXm : Pi = 0 , . . . , 6; - 1}, 
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where xo,..., xm are elements of the group and 6 1 , . . . , 6m positive integers. We say 
that P is an Fs-progression if the map 

(1.1) 
{ 0 , . . . , & i - l } x - . - x { 0 , . . . , 6 m - l } -> P, 

(/?!,. . . ,/3m) h-> X o + A ^ l H \-ßmXm, 

is an Fs-isomorphism. In particular, each ^-progression is also an Fa»-progression 
for any sr < s, and P is an F±-progression if and only if \P\ = b\ - • • 6m. 

Now we are ready to formulate the Main Theorem^1). 

Theorem 1.2 (the Main Theorem). — Let a be a positive real number, s a positive 
integer, and K a subset of a torsion-free abelian group such that 

k := \K\ > k0(a) := 
k j k + ll 

2(La + l J - a ) 

and 
\K + K\ <ak. 

Then K is a subset of an Fs -progression P of rank m < [cr — 1\ and cardinality 

(1.2) \P\ <Cn((T,8)k. 

It must be pointed out that, unlike Proposition 1.1, this theorem has only very 
few known analogues for other types of groups, all of them being more or less direct 
consequences of the Main Theorem; see Chapter 3 of Freiman's book [12]. 

We also suggest the following more precise version of the Main Theorem, asserting 
that at most |_log2 a\ dimensions of the progression P can be "large"; the others are 
bounded by a constant, depending on <J. 

Theorem 1.3. — Assuming the hypothesis of Theorem 1.2, write the Fs-progression 
P as P(XQ;XI, . . . ,xm; 6 1 , . . . , 6m)? where 61 > • • • > &m- Then 

(1.3) bi < ci2(<J, s) (i > [log2 crj). 

(See Subsection 5.5, where Theorem 1.3 is derived from Theorem 1.2.) 
The quantitative estimates for the constants involve the function / r (n , e ) , defined 

in Subsection 5.3. We obtain the estimates 

ciifas) < (2c13(a)s) <r30<r c13(<r) Ci2(cr,s) < 2c11(a,s,)fr([log2aj + 1 , £ 0 ) , 

where 

cis(o~) = fr ([8<rlog(2a)l, 1 ) , e0 = [log2 a\ + 1 - log2 a, s' = min(^, 2). 

At present, only a very poor estimate is known (see Subsection 5.3): 

/ r ( n , e ) < (2-he"1) exp exp n 

Therefore we have only 

(1.4) en < (2s) exp exp exp(9cr log(2cr)) 

^^With a few exceptions, we write explicit constants as e^, where i is the number of the section 
where the constant is defined, and j is the number of the constant in Section i. 
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Freiman published two expositions [12, 13] of his proof. Recently a new proof 
of Freiman's theorem, simpler and more transparent than the original, was found by 
Ruzsa [30]. Ruzsa's argument implies the estimate en < (2s)exp(aC\ which is better 
than (1.4) (here c is an absolute constant). In the final section we briefly review the 
main points of Ruzsa's proof. A detailed self-contained exposition of Ruzsa's proof is 
given in [26, Chapter 8] 

Our exposition is based on the same principles as Freiman's original proof [12, 
13], though the technical details are different. The most substantial innovations 
are in Subsection 5.1, where we suggest a simpler proof of the Cube Lemma, and 
in Subsection 8.3, where we apply the Bombieri-Vaaler theorem instead of Freiman's 
sophisticated elementary argument. We believe that the original argument of Freiman 
is still of great interest, even after Ruzsa's work. 

We tried to make the exposition self-contained. Only three standard results from 
the Geometry of Numbers, namely, the theorems of Minkowski, Mahler and Bombieri-
Vaaler, are quoted without proofs (but with exact references). The other auxiliary 
facts are provided with complete proofs even if they are available in the literature. 

In Section 2 we introduce the notation used throughout the paper. In Sections 3 
and 4 we reduce the Main Theorem to certain more technical statements. At the end 
of Section 4 we give a plan of the remaining part of the article. 
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2. Notation and conventions 

For J3, C C E n and a G R put 

B±C = {b±c : beB,ceC}9 aB = {ab: 6 G J3}, 

etc. 
A plane £ C l n is a set of the form v + £ ' , where v € W1 and C is a linear 

subspace of W1. By (x, y) we denote the standard inner product in E n . The Lebesgue 
measure in E n is referred to as volume and is denoted by Vol or Voln. The standard 
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