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ASYMPTOTIC MEASURES 
FOR HYPERBOLIC PIECEWISE SMOOTH MAPPINGS 

OF A RECTANGLE 

by 

Michae l Jakobson & Sheldon Newhouse 

To Adrien Douady on the occasion of his sixtieth birthday 
Abstract. — We prove the existence of Sinai-Ruelle-Bowen measures for a class of 
C2 self-mappings of a rectangle with unbounded derivatives. The results can be 
regarded as a generalization of a well-known one dimensional Folklore Theorem on 
the existence of absolutely continuous invariant measures. In an earlier paper [8] 
analogous results were stated and the proofs were sketched for the case of invertible 
systems. Here we give complete proofs in the more general case of noninvertible 
systems, and, in particular, develop the theory of stable and unstable manifolds for 
maps with unbounded derivatives. 

1. Folklore Theorem and S R B Measures 

A well-known Folklore Theorem in one-dimensional dynamics can be formulated 
as follows. 

Folklore Theorem. — Let I = [0,1] be the unit interval, and suppose { i i , / 2 , •. • } is 
a countable collection of disjoint open subintervals of I such that {J{ Ii has the full 
Lebesgue measure in I. Suppose there are constants KQ > 1 and K\ > 0 and mappings 
fi'.Ii^I satisfying the following conditions. 

(1) fi extends to a C2 diffeomorphism from C l o s u r e ^ ) onto [0 ,1] , and 

inf \Dfi(z) \ > K0 for alii. 

(2) supzeI. - f e v T ^ r l ^ l < Kx for all i. 
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104 M. JAKOBSON & S. NEWHOUSE 

where denotes the length of Ii. Then, the mapping F(z) defined by F(z) = fi(z) 

for z G Ii, has a unique invariant ergodic probability measure fi equivalent to Lebesgue 

measure on I. 

For the proof of the Folklore theorem and the ergodic properties of ¡1 see for example 

[2] and [14]. 

In an earlier paper [8] we presented an analog of this theorem for piecewise C2 

diffeomorphisms with unbounded derivatives with proof sketched. We now wish to 

give a more general version of the results in [8]. We refer the reader to that paper for 

relevant remarks and references. 

Let Q be a Borel subset of the unit square Q in the plane R2 with positive Lebesgue 

measure, and let F : Q —>• Q be a Borel measurable map. An F-invariant Borel 

probabil i ty measure ¡1 on Q is called a Sinai — Ruelle — Bowen measure (or SRB-

measure) for F if JJL is ergodic and there is a set A C Q oi positive Lebesgue measure 

such that for x G A and any continuous real-valued function </> : Q —> R , we have 

1 n_1 C 
(1) lim - y^(f>(Fkx) = / </>dfjL. 

k=0 J 

The set of all points x for which (1) holds is called the basin of ¡1. 

Note that if JUL is an SRB measure, and mi is the normalized Lebesgue measure 

on its basin, then the bounded convergence theorem gives the weak convergence of 

the averages ^ X)fc=o F+mi of the iterates of m i to JJ,. Hence, SRB measures occur 

as limiting mass distributions of sets of positive Lebesgue measure. This fact makes 

them natural objects to study. 

We are interested in giving conditions under which certain two-dimensional maps 

F which piecewise coincide with hyperbolic diffeomorphisms fi have SRB measures. 

As in the one-dimensional situation there is an essential difference between a finite 

and an infinite number of fi. In the case of an infinite number of their derivatives 

grow with i and relations between first and second derivatives become crucial. 

2. Hyperbolicity and geometric conditions 

Consider a countable collection £ = {E1^E2-)..., } of full height closed curvilinear 

rectangles in Q. Assume that each Ei lies inside a domain of definition of a C2 

diffeomorphism fi which maps Ei onto its image Si C Q. We assume each Ei connects 

the top and the bot tom of Q. Thus each Ei is bounded from above and from below 

by two subintervals of the line segments 

{(x,y) : y = 1, 0 < x < 1} and {(x,y) :y = 0y0<x<l}. 

We assume that the left and right boundaries of Ei are graphs of smooth functions 

x^(y) with \dx^/dy\ < a where a is a real number satisfying 0 < a < 1. We further 

assume that the images fi(Ei) — Si are narrow strips connecting the left and right 
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sides of Q and that they are bounded on the left and right by the two subintervals of 

the line segments 

{(x,y) : x = 0, 0 < y < 1} and {(x,y) : x = 1, 0 < y < 1} 

and above and below by the graphs of smooth functions Yl{X), \dY^/dX\ < a. We 

will see later that the upper bounds on derivatives \dx^ jdy\ < a and |<iy W/dX\ < a 

follow from hyperbolicity conditions that we formulate below. 

We call the E^s posts, the strips, and we say the E[s are full height in Q while 

the S^s are full width in Q. 

For z e Q, let £z be the horizontal line through z. We define 

6z(Ei) = d i a m ( 4 n £7»), <̂ ,max = m a x ^ ( ^ ) , <5i)min = min6z(Ei). 
zeQ zEQ 

We assume the following geometric conditions 

G l . int Ei H int Ej = 0 for i ^ j . 
G2. mes(Q \ U« int Ei) — 0 where mes stands for Lebesgue measure, 
G3. — YLi ,̂raax log 5z,min < OO. 

We emphasize that the strips Si can intersect in an arbitrary fashion, differently 

from condition G3 in ([8]). 

In the standard coordinate system for a map F : (x,y) —» (Fi {x, y), F2(x, y)) we 

use DF(x,y) to denote the differential of F at some point (xyy) and FjXj Fjy, Fjxx, 

Fjxy, etc., for partial derivatives of Fj, j = 1,2 . 

Let J F ( Z ) = \Flx(z)F2y(z) — Fly{z)F2x(z)\ be the absolute value of the Jacobian 

determinant of F at z. 

Hyperbolicity conditions, — There exist constants 0 < a < 1 and K0 > 1 such that 

for each i the map 

F(z) = fi(z) for z e Ei 

satisfies 

HI . F2x(z) +a F2y(z)\+a2 Fly(z)\<a\Flx(z)\ 

H2. Flx(z)\ - a Fly(z) > K0. 

H3. \Fly{z)\ +<x\F2y{z)\ +a2\F2x(z)\ < a\Flx(z)\ 

H4. Flx(z)\- a F2x(z) > JF{z)K0. 

For a real number 0 < a < 1, we define the cones 

= { ( f i , t * ) : h | < a | t ; i | } 

Ka = {(vi,V2) : | v i | < a\v2\} 

and the corresponding cone fields K%(z), K^(z) in the tangent spaces at points z G R2. 

Unless otherwise stated, we use the max norm on R2, | ( ^ i , ^ 2 ) | = max( |v i | , \v2\). 

The following simple proposition relates conditions H1-H4 above with the usual 

definition of hyperbolicity in terms of cone conditions. It shows that conditions HI 
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and H2 imply that the K% cone is mapped into itself by DF and expanded by a factor 

no smaller than K Q while H3 and H4 imply that the K^ cone is mapped into itself by 

DF~X and expanded by a factor no smaller than K Q . 

Proposition 2.1. — Under conditions H1-H4 above, we have 

(2) DF{K%) Ç Kl 

(3) veK£ \DFv\ > K0\v\ 

(4) DF-\K'a) Ç Kl 

(5) veKZ \DF-Xv\ > K0\v\ 

Proof. — HI implies (2): 

Let v = (vi,v2) G K%. Then, \v\ = \v± \ since a < 1 and \v2\ < a\v±\. 

Write DF(vuv2) = (FlxV! + Flyv2,F2xv1 + F2yv2) = (ui,tz2). 

Then, using HI , we have 

\v>2\ = \F2xV1 + F22/v21 

< \F2xl\v! I + |F22 / | a | ^ | 

< | ^ i | ( |F2x | + |F2y|a) 

< | v i | ( a | F i x | - \Fly\a2) 

< a\FlxV! + F i„v2 | 

= a | u i I 

proving (2) . 
H2 implies (3) : 
Now, let v = (vi,v2) be a unit vector in K™, so that \v\ = Ĵ i | = 1 and \v2 \ < a. 

Using H2 and the fact that DF(v) G K%, we have 

\DF(v)\ = \Ul\ 

= \Flxvx + Flyv2\ 

> \Flx\-a\Fly\ 

> K0 

which is (3) . 

The proofs that H3 and H4 imply (4) and (5) are similar using the fact that 

DF-i = ±(F*y ~Fiy) 
Jz \—F2x Fix J 

This completes our proof of Proposition 2.1. • 

Remark. — In ([8]) different hyperolicity conditions were assumed which implied the 

invariance of cones and uniform expansion with respect to the sum norm \v\ — \v\ \ + 

Iv21 (see [3] and [7] for related hyperbolicity conditions). The methods here can be 

adapted to work under the assumptions of ([8]). 
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