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AN EXAMPLE OF BLOWUP AT INFINITY 
FOR A QUASILINEAR WAVE EQUATION 

by 

Serge Alinhac 

Dédié à J-M. Bony à l'occasion de son soixantième anniversaire 

Abstract. — We consider an example of a Quasilinear Wave Equation which lies 
between the genuinely nonlinear examples (for which finite time blowup is known) and 
the null condition examples (for which global existence and free asymptotic behavior 
is known). We show global existence, though geometrical optics techniques show 
that the solution does not behave like a free solution at infinity. The method of proof 
involves commuting with fields depending on u, and uses ideas close to that of the 
paradifferential calculus. 

Résumé (Explosion à l'infini pour un exemple d'équation d'ondes quasi-linéaire) 
Nous considérons un exemple d'équation d'ondes quasi-linéaire qui se situe entre 

les exemples vraiment non-linéaires (pour lesquels l'explosion en temps fini est 
connue) et les exemples vérifiant la condition nulle (pour lesquels la solution existe 
globalement et est asymptotiquement libre). Nous montrons l'existence globale, bien 
que des arguments d'optique géométrique non-linéaire indiquent un comportement 
non libre de la solution à l'infini. La méthode de la preuve fait intervenir la com
mutation avec des champs dépendant de u, et utilise des idées proches de celles du 
calcul paradifférentiel. 

In this text, Theorems, Propositions etc. are numbered according to the section 
where they appear, without any mention of the Chapter. When quoted in a différent 
chapter, they appear with the additional mention of the Chapter. For instance, in 
Chapter III, section 2, there is Lemma 2. In Chapter IV, section 4, the same Lemma 
is quoted as Lemma III. 2. 

2000 Mathematics Subject Classification. — 35L40. 
Key words and phrases. — Quasilinear Wave Equation, Energy inequality, decay, blowup, geometrical 
optics, Poincaré inequality, paradifferential calculus, weighted norm. 

© Astérisque 284, SMF 2003 



2 S. ALINHAC 

Introduction 

We prove in this paper the global existence (for s small enough) of smooth solutions 
to the équation in x R* 

d2u — c2(u)Axu = 0, c(u) = l + u, 

with smooth and compactly supported initial data of size s. 
This resuit has been proved before only in the radially symmetric case by Lindblad 

[13], who also pointed out to some évidence that the nonradial solutions should have 
a very large lifespan. It turns out that the solutions do not behave at t — -hoc like 
solutions of the free wave équation (that is, u ~ e/(l + t)); most derivatives of u 
have, apart from the factor e/(l + £), an exponential growth expCV at infinity, where 
T = elog(l + t) is the slow time. This explains the title of this paper. 

The method of proof is that of Klainerman [11], combining energy inequalities 
and commutations with appropriate "Z" fields. Because of the blowup at infinity, the 
fields we use have to be adapted to the geometry of the problem (as in Christodoulou-
Klainerman [7]), and their coefficients smoothed out. This is very close to the parad
ifferential calculus of Bony [6], or, equivalently, to a Nash-Moser process. 

I. Main resuit and ideas of the proof 

We consider in R^ x Ht the équation 

(l.l)a F(u) = d2u - c2(u)Axu = 0, 

where we will take for simplicity c — c{u) — 1 + u, since higher powers of u produce 
only easily handled terms. The coordinates will be 

x = (xi,X2,Xs), t = xo, 

and 
du = (diu, dsu, dtu). 

The initial data are 

(1.1)6 u(x, 0) = eu\(x) + e2u02(x) + • • • , (dtu)(x, 0) = su\(x) + s2ul(x) + • • • , 

for real C°° functions u\, supported in the bail |x| < M. 
We will use the usual polar coordinates r = x = rou, and define the rotation 

fields 
Ri = x2d3 - £3<92, R2 = x3di - xi<93, Rs = xid2 - x2di. 

By Zo we will dénote one of the standard Klainerman's fields 

(1.2) di,Rj, S = tdt + rdr, hi = Xidt + tdi. 

For the Laplace operator, we have then 

Ax = d2r + (2/rR + (l/r2)Aw, 
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where the Laplace operator on the sphère Aw is = R\ + i?2 -h 
We define two linear operators 

(1.3) P = c-xd1 - cA, Px = c-1^2 - c(5r2 + r"2Aw), 

such that, setting u = e/rU, we have Pu = 0, P\U = 0. We also set 

L = c-^dt + c^2dr, Lx = c-l'2dt - cl'2dr, 

for which we have 

(1.4) [L, L{\ = (Liw/2c)Li - (Lu/2c)L, Pi = LLX - cr"2Au + {Lu/2c)L. 

Remark that, since c = c(u), iterated use of the fields L, L±, dj,Rj,S will generate a 
considérable number of terms depending again on u. To master this phenomenon, we 
will have to construct an appropriate "Calculus". Finally, we set 

(1.5) ai = M + 1-r + t, 

which is positive and roughly équivalent to the distance to the boundary of the light 
cone. 

Our main resuit is the following Theorem. 

Theorem. — Let so G N . For s small enough, the Cauchy problem (1.1) has a global 
smooth solution u. Moreover, we have the estimâtes 

\Z%du\L2^Ce(l + i)Ce, \a\ <50 , 

\du\ ^ Ce(l + t)~\ \Z£du\ < Ce(l + t)~1+C£a~1/2, \a\ ^s0-2. 

In the case of radially symmetric data, the solution u is a smooth function of (r2, t). 
For this case, Lindblad [13] has proved global existence. We explain now the main 
ideas of the proof. In the whole paper, ail constants will be denoted by C, unless 
otherwise specified. 

1.1. A fîrst insight using nonlinear geometrical optics 

a. If w dénotes the solution of the linearized problem on zéro 

(<92 - A)w = 0, w(x,0) = ul(x), K)(x,0) = u\(x), 

we know (see [10]) that, for some smooth Fo, 

w ~ l/rFo(u, r — t), r —» +oo. 

Taking sw as a rough approximation of we observe as in [10], [1] that the quadratic 
nonlinearity uAu produces a slow time effect, for the slow time r = e\og(l + t). This 
means that, for large time, we expect formally u to be better approximated by 

e/rV{r -t,u,r), 
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for a smooth V satisfying V(r — £,OJ, 0) = FO(CJ, r — i). Substituting the above expres
sion of u in (1.1), we obtain 

(1.6) V(rT + VV<T<T=0, V(a,oj,0)=Fo(uj,<j), a = r-t. 

As pointed out already in [13], this is in sharp contrast with what happens, for 
instance, for the équation d^u — (1 + ut)Au = 0. In this case, a similar approach 
yields for V the équation 2Var — VaVaa = 0, which is essentially Burgers'équation and 
blows up in finite time. Here, one easily sees that (1.6) has global solutions: this gives 
a hint that the lifespan of u could be very large (though not necessarily +oo, see for 
instance the case of the null condition in two space dimensions [1]); the conséquences 
of this fact are precisely stated in Theorem II. 1. 

b. Looking more closely, we see that the solution V of (1.6) satisfies 

K\ < C, \d"V\ < Cec\ 

Since we are willing to use Klainerman's method [11], we have to apply products Z§ 
to (l.l)a, and use an energy inequality for P to control \8ZQU\L2. On the one hand, 
the boundedness of Va yields 

\du\ ^ Ce/(l + t). 

In the standard energy inequality for P (see [10] Prop. 6.3.2), this will cause an 
amplification factor of the initial energy of the form 

exp Ce 
rt 

fo 
ds/(l + s) = (l + tf£. 

Thus the best one can expect, using the energy method and Klainerman's inequality, is 

\Z$du\ ^ Ce(lsssssssss + t) (a,oj,0)=Fo( 

which is the resuit we obtain. On the other hand, if we believe that u and its deriva-
tives actually behave like e/rV, we see that derivatives like Riu or d^u, etc. do behave 
like e/r(l + t)Ce, which matches with what we just obtained from the energy method. 
This is why we say that we have blowup at infinity: the solution u exists globally, but 
does not behave like a solution of the linear équation. This phenomenon has been 
observed already, for instance in the study by Delort [8] of the Klein-Gordon équation. 

1.2. Commuting Klainerman's fîelds 
a. If we apply for instance a rotation field Ri to (l.l)a, we obtain 

PRiU-2(Riu)(Au) =0. 

Writing the energy inequality for P, it is not possible to reasonably absorb the term 
(Riu)(Au) using Gronwall's lemma since 

exp 
'0 

Riu\Loo -exp[C-1(l + )̂C1 
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