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GEOMETRY OF 
MULTI-DIMENSIONAL DISPERSING BILLIARDS 

by 

Péter Bálint, Nikolai Chernov, Domokos Szász & Imre Péter Tóth 

Abstract. — Geometric properties of multi-dimensional dispersing billiards are studied 
in this paper. On the one hand, non-smooth behaviour in the singularity subman
ifolds of the system is discovered (this discovery applies to the more general class 
of semi-dispersing billiards as well). On the other hand, a self-contained geometric 
description for unstable manifolds is given, together with the proof of important reg
ularity properties. All these issues are highly relevant to studying the ergodic and 
statistical behaviour of the dynamics. 

1. Introduction 
Let Q be an open connected domain in Wl or on the eZ-dimensional torus T(i. 

Assume that the boundary dQ consists of a finite number of Ck smooth (k ^ 3) 
compact hypersurfaces (possibly, with boundary). Now let a pointwise particle move 
freely (along a geodesic line with constant velocity) in Q and reflect elastically at the 
boundary ÔQ (by the classical rule "t he angle of incidence is equal to the angle of 
reflection'*). This is what is commonly refered to as a billiard dynamical system. 

Billiards make an important class in the modern theory of dynamical systems. 
Many classical and quantum models in physics belong to this class, most notably, 
the Lorentz gas [Si] and hard ball gases studied as early as the XIX century by 
L. Boltzmann [Bo]. 

The periodic Lorentz process is obtained by fixing a finite number of disjoint convex 
bodies B\, Bs C Td with smooth boundary and putting the moving particle in 
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the exterior domain Q = Td \ (UBlt). This system models the motion of an electron 
among a periodic array of molecules in a metal, as it was introduced by H. Lorentz 
in 1905. 

Mathematical studies of billiards have begun long ago. Ya. Sinai in his seminal 
paper of 1970 [Si] described the first large class of billiards with truly chaotic behavior 
— with nonzero Lyapunov exponents, positive entropy, enjoying ergodicity, mixing, 
and (as was later discovered by G. Gallavotti and D. Ornstein [GO]) the Bernoulli 
property. Sinai billiards are defined in two dimensions (d — 2), i.e. for Q C t2 or 
Q c T 2 , and the boundary of Q must be concave (i.e., convex inward Q), similarly to 
the Lorentz process (where the bodies BL are convex). Due to the geometric concavity, 
the boundary dQ scatters or disperses bundles of geodesic lines falling upon it, see 
Fig. 1. For this reason, Sinai billiards are said to be dispersing. 

FIGURE 1. Scattering effect 

Lorentz processes in two dimension have been studied very thoroughly since 1970. 
Many fine ergodic and statistical properties have been established by various re
searchers, including P. Bleher, L. Bunimovich, N. Chernov, J. Conze, C. Dettmann, 
G. Gallavotti, A. Krâmli, J. Lebowitz, D. Ornstein, K. Schmidt, N. Simanyi, Ya. Sinai, 
D. Szâsz, and others (see the references). The latest major result for this model (the 
exponential decay of correlations) was obtained by L.-S. Young [Yl]. The success in 
these studies had significant impact on modern statistical mechanics. The methods 
and ideas originally developed for the planar Lorentz process were applied to many 
other classes of physical models — see recent reviews by Cohen, Gallavotti, Ruelle 
and Young [GC, Ru, Y2]. 

On the other hand, the progress in the study of the multidimensional Lorentz 
process (where d > 2) has been much slower and somewhat controversial. Relatively 
few papers were published covering specifically the case d > 2, especially in contrast 
to the big number of works on the 2-D case. Furthermore, the arguments in the 
published articles were usually rather sketchy, as in Chernov's paper [Chi]. It was 
commonly assumed that the geometric properties of the multidimensional Lorentz 
process were essentially similar to those of the 2-D system, and so the basic methods 
of study should be extended from 2-D to any dimension at little cost. Thus, the 
authors rarely elaborated on details. 
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Recent discoveries proved that spatial dispersing billiards are very much different 
from planar ones. Bunimovich and Rehâcek studies of astigmatism [BR], in the 
somewhat different context of focusing billiards, emphasized the known fact that 
the billiard trajectories may focus very rapidly in one plane and very slowly in the 
orthogonal planes. Astigmatism is unique to 3-D (and higher dimensional) billiards, 
it cannot occur on a plane. It plays an improtant role in higher dimensional focusing 
billiards as investigated in [BR]. 

In this paper we consider multidimensional dispersing billiards. We show that 
multi-dimensionality has great effect on the dynamics in the dispersing case as well 
— the system requires much more elaborated study than the 2D process. What is 
worse (cf. section 3), the singularity manifolds in the phase space of a spatial Lorentz 
process have pathologies — points exist where the sectional curvature is unbounded 
(blows up). Actually, singularity manifolds are in these pathologies — which form 
two-codimensional submanifolds of them — not even differentiable. Indeed, as it 
will be shown in section 3, the unit normal vector to the singularity manifold has 
different directional limits at the pathological points — the geometry is pretty much 
like the classical Whitney umbrella x2z — y2 in ]Rl*. This phenomenon is again unique 
to billiards in dimension d ^ 3. All these facts call for a revision of some earlier 
arguments and results on the multidimensional Lorentz process. This is much the 
more important since the studies of physically relevant multiparticle systems will 
require the same methods as those used for the high-dimensional Lorentz process. 

Throughout the paper we conduct a systematic study of the geometry of the Lorentz 
process in any dimension d > 2, aiming at the future investigation of its ergodic and 
statistical properties (in particular, the decay of correlations). First we describe our 
recent discovery — pathological behavior of singularity manifolds — and show exactly 
where it occurs (in order to "localize the pathology"). Then we develop tools for the 
study of basic geometric properties of the dynamics — operator techniques in the 
Poincaré section of the phase space. By applying these geometric tools we provide 
rigorous proofs of important properties for unstable manifolds: we show absolute 
continuity, distorsion bounds, curvature bounds and alignment. All these facts are 
absolutely important for the studies of ergodic and statistical properties of the Lorentz 
gas, but strangely enough, their proofs (in the case of dimension d > 2) have never 
been published before. Lastly, we show how our results can be used in the study of 
the decay of correlations, which will be done in a separate paper. 

2. Preliminaries 

There are two ways of considering billiard dynamics, the motion of a point particle 
in a connected, compact domain Q C Td = W1 /Ul, d ^ 2 with a piecewise (73-smooth 
boundary. The phase space of the flow can be identified with the unit tangent bundle 
over Q — the configuration space is Q while the phase space is M :— Q x §ri_1 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



122 P. BÂLINT, N. CHERNOV. D. SZÂSZ & I.P. TÔTH 

(Sfi_1 is the surface of the unit d-ball). In other words, every phase point x is of the 
form (g, v) where q G Q and v G Sd_1. We denote the flow by S* : —oo < t < oo. 

On the other hand there is a naturally defined cross-section for this flow. The 
phase space of the Poincaré section map (or simply, of the billiard map) is M : = 
dQ x §!fr\ where + means that we only take into account the hemisphere of the 
outgoing velocities (for a more precise definition of the phase space, see subsection 4.1). 
For any x G M we set t+(x) := inf{£ > 0 | Sfx G M}, and T+x := St+^x (of course, 
T+ : A4 —» A-/). Then the Poincaré section map T : M —> M is defined as follows: 
Tx := T+x for x G Af. 

We require the following properties from the system to be studied: 

- Our billiard is dispersing (a Sinai-billiard): each 0Qt is strictly convex (had we 
required convexity only, our billiard would be semi-dispersing). 

~ The scat terers B, are disjoint. This ensures the C^-smoothness of the boundary 
dQ, i.e. that there are no corner points. 

- The condition that the horizon is finite says exactly that t+(x) < oc for any 
x G M. 

Finally, some more notation. Let n(q) be the unit normal vector of the boundary 
component 0Qt at q G dQr directed inwards Q. Then the invariant Liouville-measure 
of the discretized map is 

(2.1) dfi(q, v) := const. (n(q). v) dq dv 

where dq is the induced Riemannian measure on DQ whereas dv is the Lebesgue-
measure on 1. 

Throughout the paper, unless otherwise emphasized, we are considering this dis
cretized dynamics. 

2.1. Fronts. — In billiard theory, several basic constructions and concepts are 
based on the notion of a local orthogonal manifold, which - for simplicity - we will 
call front. A front W is defined in the whole phase space rather than in the Poincaré 
section. Take a smooth 1-codim submanifold E of the whole configuration space, and 
add the unit normal vector v(r) of this submanifold at every point r as a velocity, 
continuously. Consequently, at every point the velocity points to the same side of the 
submanifold E. Then 

W = {(r.c(r)) \ reE}cM, 
where v : E —> §r/_1 is continuous (smooth) and v _L E at every point of E. The 
derivative of this function c, called B plays a crucial role: dv = Bdr for tangent 
vectors (dr,dv) of the front. B acts on the tangent plane TrE of E, and takes its 
values from the tangent plane J — Tvrr)^>d~l of the velocity sphere. These are both 
naturally embedded in the configuration space Q, and can be identified through this 
embedding. So we just write B : J J. B is nothing else than the curvature 
operator of the submanifold E. Yet we will prefer to call it second fundamental 
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