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ON THE SCALING STRUCTURE FOR PERIOD DOUBLING 

by 

Garrett Birkhoff, Marco Martens & Charles Tresser 

Abstract. — We describe an order on the set of scaling ratios of the generic uni­
versal smooth period doubling Cantor set and prove that this set of ratios forms 
itself a Cantor set, a Conjecture formulated by Coullet and Tresser in 1977. This 
result establishes explicitly the geometrical complexity of the universal period dou­
bling Cantor set. We also show a convergence result for the two period doubling 
renormalization operators, acting on the codimension one space of period doubling 
maps. In particular they form an iterated function system whose limit set contains a 
Cantor set. 

1. Definitions and Statement of the Results 
A unimodal map with critical exponent a > 1 is an interval map that can be written 

in the form / = 0o^o0, where 'i/j and <fi are orientation preserving CA diffeomorphisms 
of [0,1], and qt : [0,1] —» [0,1] with t G (0, | ] is the standard folding map (with critical 
exponent a > 1) defined by 

Qt(x) = 1 -
\x~t\a 

dx +d1r+ 
that "folds" the interval at its unique critical point t, qt(t) = 1 and qf(t) = 0. 

The space of orientation preserving diffeomorphisms of the interval [0,1] with fixed 
smoothness is denoted by DiffA'([0,1]). The space of unimodal maps with fixed critical 
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exponent a > 1 and fixed smoothness can be represented by 
U = DiffA ([0,1]) x (0, \] x Difffc([0,1]). 

It carries what we call Ck-distances dk, k ^ 3, which combines the two Ck distances 
on each of the two diffeomorphisms vb and qb with the distance between the parameters 
t of the folding parts. Notice that in general, the critical point of / is Cf = <t)~l{t) ^ t. 
Let pf be the unique fixed point of / G U. A map on the interval is renormalizable 
if it exchanges some number N\ of subintervals. The return map on one of these 
subintervals can again be renormalizable, exchanging this time N2 intervals. If the 
process continues forever, one says the map is infinitely renormalizable. For precise 
definitions and an account of the theory, see for instance [dMvS]. Except otherwise 
specified when we say renormalizable, we mean renormalizable in the sense of period 
doubling, i.e., the map exchanges two intervals. We will only consider infinitely 
renormalizable maps with N\ = N2 = • • • = 2. 

Fix a critical exponent a > 1. We consider the set W of maps / : [0,1] —> [0,1] 
with f(cf) = 1 and /( l) = 0 which are infinitely renormalizable. The critical point 
defines two invariant intervals 

Uf = [f2(cf)J4(cf)] and Vf = [f(cf),f(cf)}. 
To these two intervals correspond two renormalization operators RQ : W —* W and 
R1 : W -> W defined by: 

R*f=[f2\Vf], and Rif = [f2\Uf], 
where [•] means affine resettling to obtain a unimodal map on [0,1] that sends its 
critical point to 1 and 1 to 0. 

Observe, both operators preserve W and R \ is the critical point period doubling 
renormalization operator which has been most studied in the literature (see in par­
ticular [La], [Ly], [Mc], [dMvS], [S2], and references therein for the case when a is 
an even integer, and [El], [E2] and [Ma2] for arbitrary a > 1). 

Let Tn be the set of all words of length n over the alphabet {0,1}. Wre denote by T 
the set of all infinite words of the form wl°° over the alphabet {0,1}, and by T the set 
of all infinite words over the alphabet {0,1}, equipped with the usual metric. Notice 
that each Tn naturally embeds into T. For any word r G T, we will write r^ny G Tn 
for the initial segment of length n of r. We are going to consider the iterated function 
system generated by RQ and R\. To this end, we define: 

Rr{n} = Rr(l) O • • • O RT{n) : W —+ W, 
and we will prove the following convergence result for this iterated function system. 

Theorem 1.1. — For any fixed point fo of RQ, there is a Holder-continuous map h 
T —> W such that for any r G T 

lim Rr, , fn = h(r). 
n —> oc 
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Moreover, the convergence of the sequence {RT{n}fo} is exponential in the C2-metric. 
A similar statement holds for any fixed point f\ of R\. 

Remark 1.2. — For any a > 1, the existence of a fixed point f\ of R\ is proven in 
[El, E2] and [Ma2]. We will show (see Lemma 2.4) that the existence of a fixed point 
fi for Ri is equivalent to the existence of a fixed point fo for R0. The uniqueness of 
fi in the case when a is an even integer was proven in [S2]. In the sequel we will fix 
fo and fi to be fixed points of respectively Ro and Ri. 

Remark 1.3. — The set h(T) of limits limn_̂ oo RT{n} fo is denoted by A C W. Here 
the notation A represents the fact that we believe, but do not prove, that the set A 
is indeed the attractor of the iterated function system generated by Ro and Ri, and 
in particular does not depend on the initial point, chosen here to be fo-

The second Main result, Theorem 1.10, describes the structure of the set A in the 
case when a = 2. It relies on convexity properties of fo and Ri(fo)-

Convexity Conditions 1.4. — We assume that: 
CI /o|[(/o)3(c/0), 1) is strictly convex, 
C2 Ri(fo)\[{Ri{fo)f{cRlUo)), 1] is strictly convex. 

Remark 1.5. — In section 4 we will show that CI actually holds true in the case when 
successive Ri renormalizations of a convex function converge to fi'. this is known to 
be the case when a is an even integer. Furthermore, as we will explain, one can check 
that both CI and C2 hold true in the most important case of generic (quadratic) 
critical points, a = 2. 

Recall that a Cantor set is a perfect and totally disconnected compact metric space. 

Proposition 1.6. — If the Convexity Conditions CI and C2 hold true, then the limit 
set A of orbits of fo under the interated function system defined by Ro and Ri is a 
Cantor set. 

For completeness and to fix notations and definitions, we include some basic dis­
cussion of the scaling function, whose origin is rather diffuse: first conjectures about a 
form of it appeared in [CT], the name and a form of it come from [F], while what was 
arguably the first theorem about it was in a never circulated work by Feigenbaum and 
Sullivan cited in [SI]. The literature on scaling functions is extensive and discusses 
scaling functions beyond the context of dynamics. In particular, in [KSV] a relation 
with the thermodynamic formalism appeared. 

Let A be the invariant Cantor set of fo- In the sequel we will remind the dynamical 
construction of covers of A by finitely many intervals. These covers, called cycles, 
form a refining nest of covers of this Cantor set. The scaling function contains the 
infinitesimal geometrical information on how these covers refine. It will be shown that 
the Cantor set A is, from a geometrical point of view, very different from the well 
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known middle third Cantor set, in which each refinement is done everywhere in the 
same manner. 

Although, the Cantor set A is the invariant set of a non expanding map, it is also the 
invariant Cantor set of an expanding interval map, the so-called presentation function 
[R], [SI], a great remark that Rand attributes to Misiurewicz. As we next recall, this 
directly follows from fo being a renormalization fixed point that is expanding to the 
right of pfo. 

Let U = Ufo and V = Vfo = [1 - v, 1]. The affine (scaling) map s : [0,1] -» [0,1] 
defined by s : x \—> v - (x — 1) + 1 is a homeomorphism from A to AnV. This is a 
direct consequence of the fact that s conjugates /o = Ro(fo) = s_1o/02os to f§. Also 
the restriction, 

fo\V: Anv—> An/7, 

is a homeomorphism so that the map g : [0,1] —> U defined by g = (fo\V) o s is a 
homeomorphism from A to A D U. Let F : [0,1] —> [0,1] be the multivalued function 
defined by the two branches 

F0 = s: [0,1] —+[0,1] and FX = g : [0,1] —+ [0,1]. 

The branch FQ = s is affine, contracting, and orientation preserving while the branch 
Fi = g is orientation reversing. Furthermore, the absolute value of the derivative of 
Fi strictly increases as a consequence of the Convexity Condition CI, so that Fi is 
also contracting (as pf0 is an expanding fixed point). It follows that the invariant set 
of the iterated function system F = {F0, Fi} is A, the invariant Cantor set of /Q. 

The cover {[/, V} of A is called the cycle of the first generation. The two intervals 
of this cycle are permuted by the map fo. The Cantor set A is the intersection of a 
decreasing sequence of covers we call respectively the cycles of generation n: the cycle 
of generation n is the cover of A consisting of 2n intervals which are permuted by fo. 
The intervals that form the nth cycle can be described as follows. 

The construction of the cycles is made by using the iterated function system gen­
erated by Fo and F\. We will use a notation for the words describing sequences of 
compositions of these maps that will be different from the one we used in the defini­
tion of the iterated function system generated by RQ and R\. Namely, we write £n 
for the set of words w = w(l)w{2)... w(n) of length \w\ = n over the alphabet {0,1}, 
and E for the set of infinite sequences over the alphabet {0,1} with the usual metric. 
Let 

Iw = Fw(n) ° - - - ° ^ ( l ) ( [ 0 , l ] ) . 

The nth cycle consists of the intervals Iw with w a word of length n. 

Lemma 1.7. — The way fo permutes these intervals is described by addition mod 2n 
on the words indexing the intervals. In particular, if c is the critical point of fo then 
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