
Astérisque

YURI KIFER
Averaging in difference equations driven by
dynamical systems

Astérisque, tome 287 (2003), p. 103-123
<http://www.numdam.org/item?id=AST_2003__287__103_0>

© Société mathématique de France, 2003, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_2003__287__103_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Astérisque 
287, 2003, p. 103-123 

AVERAGING IN DIFFERENCE EQUATIONS 
DRIVEN BY DYNAMICAL SYSTEMS 

by 

Yuri Kifer 

Dedicated to Jacob Palis for his sixtieth birthday 
Abstract. — The averaging setup arises in the study of perturbations of parametric 
families of dynamical Systems when parameters start changing slowly in time. Usu-
ally, averaging methods are applied to Systems of differential équations which combine 
slow and fast motions. This paper deals with différence équations case which leads to 
wider class of models and examples. The averaging principle is justified here under a 
gênerai condition which is verified when unperturbed transformations either préserve 
smooth measures or they are hyperbolic. The convergence speed in the averaging 
principle is estimated for some cases, as well. 

1. Introduction 

In the study of évolution of many real Systems we can usually observe only few 
parameters while other less significant ones are regarded as constant in time. A more 
précise investigation may reveal that thèse parameters change, as well, but much 
slower than the others. Thèse leads to complicated double scale équations describing 
slow and fast motions which are difficult to solve directly. Such problems were en-
countered with already long ago in celestial mechanics in the study of perturbations 
of planetary motion. People noticed that good approximations of the slow motion on 
long time intervais can be obtained by averaging coefficients of its équation in fast 
variables. This averaging principle was applied in celestial mechanics long before it 
was rigourously justified in some cases in the middle of the 20th century (see [18] and 
historical remarks there). 

Traditionally, averaging methods were employed in the study of two scale ordinary 
differential équations describing a continuous time motion. On the other hand, it 
is well known that the study of discrète time dynamical Systems, i.e. of itérâtes of 
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transformations (not necessarily invertible), enables us to deal with a wider class of 
models and examples and to reveal new effects. Suppose that an idealized physical 
System can be described by a transformation FQ of a (d + m)-dimensional space and 
there exist fonctions X ] , . . . , Xd which do not change along orbits of Fo (intégrais 
of motion). Then, generically, Fo can be written as a transformation of a locally 
trivial fiber bundle M. = {(x,y) : x G Rd, y G Mx) with base Rd and fibers Mx 
being m-dimensional manifolds acting by the formula FQ{X, y) = (x, fxy) where fx = 
/(x, •) : Mx —» Mx is a transformation of Mx. It is natural to view a real physical 
System as a perturbation of the above idealized one, and so it should be described by 
a transformation 

(1.1) F£{x, y) = (x + e${x, y, e), f(x, y, e)) 

where $(•,-,e) : M -> Rd and f(x, : Mx Mx. Since locally M. has a product 
structure U x Af, where U is an open subset of Wl and M is an m-dimensional 
manifold, and itérâtes F£n(x, y) of any point (x, y) in U x M stay there for ail n ^ S/e 
with small but fixed S = 6(x) > 0 we conclude that it suffices to study the évolution 
on time intervais of order 1/e only on product spaces and then glue pièces of orbits 
together. 

In this paper we consider différence équations of the form 

Xe\n + 1) - Xe(n) = e$(X£(n), Y£{n),e), X£(0) = x, 

(1'2) Y£(n + 1) - f(X£(n), y£(n), e), Y£(0) = y 

where Xe (n) = Xfr y{n) G IRd, Y£(n) = Y£ (n) runs on a compact m-dimensional 
Riemannian manifold M, $ = $(x,y,e) is a Lipschitz in x,y,e vector fonction, 
fx('i^) = f{xri£) ig a family of smooth maps (usually, endomorphisms or diffeo-
morphisms) of M close to fx. Thus (X£y(n),Y£y(n)) = F™(x,y). The équations 
(1.2) usually cannot be solved explicitly and it is désirable to approximate its solu
tions for small s. Returning back to the unperturbed e = 0 case éliminâtes the slow 
motion Xe completely and gives a rather pure approximation valid only for bounded 
time intervais. The averaging principle is supposed to give a prescription how to ap
proximate the slow motion Xe on time intervais of order 1/e. Récurrent relations (1.2) 
can be regarded as a more gênerai than usual setup for perturbations of dynamical 
Systems where not only the transformation itself is perturbed but also we begin to 
take into account évolution of some parameters whose change was disregarded before. 

We note that the standard continuous time averaging setup (see [13]) can be always 
reduced by discretizing time to a model described by différence équations of type 
(1.2). On the other hand, an attempt to go the other way around faces substantial 
difficulties since the standard suspension construction should be implemented now for 
différent transformations fx and it is not clear how to glue everything together in an 
appropriate way. Observe, that (1.2) can be gêneralized adding some randomness in 
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the right hand sides there so that fx(-,e) become random endomorphisms, but we 
will not discuss this setup here. 

Assume, first, that the fast motion Y£(n) is independent of the slow variables, i.e. 
f(x,y,e) = fy, and so Yx (n) = fny. For an ergodic /-invariant probability measure 
fj, the limit 

(1.3) e$(X£(t))X£(0 
1 
N 

v-i 

n=0 

e$(X£(t))f e$(X£(t))X£(0 

exists for /i-almost ail y. For such y's uniformly in n the solution Xxy of (1.2) is close 
on any time interval of order 1/e to the solution Xe — = Xx^, taken at integer 
times, of the différential équation 

(1.4) 
dX£(t\ 

dt 
e$(X£(t)), X£(0) =x 

where <É> = (see similar continuous time results in [18]). Already in this case the 
averaging principle works only for /i-almost ail initial points y and for différent y's 
averaged solutions may be différent. In the particular case when / is uniquely ergodic 
the convergence in (1.3) is uniform in y and for ail y, whence the averaged équation 
(1.4) and its solution are unique and the latter approximates X£(n), n G [0,N/e] 
uniformly. 

The gênerai case (1.2) when the fast and the slow motions are fully coupled is much 
more complicated. The averaging principle suggests here to approximate X£x by Xx 
satisfying (1.4) but with $ given by 

(1.5) $(x) = ^,(x) = lim 
n—>OO n 

n—1 
e$(X£(t))g 

Â; = 0 

provided the last limit exists for "most" x and y. If \ix is an ergodic invariant measure 
of fx then the limit (1.5) exists for /ix.-almost ail y1 s and 

(1.6) e$(X£(t))X£(0) =r $(x,y)dfix(y). 

Observe that Lipschitz continuity of $ cannot be guaranteed now without further 
assumptions even for smooth and so we do not have automatically existence and, 
especially, uniqueness of solutions in (1.4) in thèse gênerai circumstances. On the 
other hand, consider the récurrent relation for X (n) = Xx(n), 

(1.7) X" (n + 1) = XE (n) + £^(XE(n)), X* (0) = x 

which détermines X (n) without any conditions on $ and it is easy to see that if $ 
is Lipschitz continuous and bounded then 

(1.8) max \XeJn) -XJri)\ ^ CTe 
e$(X£(t) 
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for some CT > 0 independent of e. Thus we may discuss the approximation of X£(n) 
by X (n) under more gênerai conditions when we even do not have uniquely defined 
solutions of (1.4). 

In gênerai, there exists no natural family of invariant measures \ixi x G RFI, since 
the transformations fx may have rather différent properties for différent x's and the 
averaging principle can be justified here only under substantial restrictions. First, 
the averaging prescription relies here on existence of a family of probability measures 
jix such that the limit (1.5) exists /ix-almost everywhere (a.e.) and it is given by 
(1.6) (at least, Lebesgue a.e. in x). Of course, in addition, we need suffîciently good 
dependence of <Ê> and / in (1.2) on e but still, this does not seem to be enough, in 
gênerai. The problem here is that the average in (1.5) is taken along orbits of the 
unperturbed fast motion but in the perturbed évolution (1.2) we cannot disregard now 
changes in the slow variable parameter of the fast motion, and so we have to study 
the interplay between unperturbed and perturbed dynamics. Namely, the method of 
this paper relies on measure estimâtes of sets of pairs (x, y) which arrive under the 
action of to sets of points with a specified behavior of averages for the unperturbed 
évolution. Then we will show that the slow motion is close to the averaged one in 
certain L1-sensé. Required estimâtes can be done assuming, for instance, that each 
fx is a smooth endomorphism or a diffeomorphism of M preserving a smooth measure 
\ix on M which is ergodic for Lebesgue almost ail (a.a.) x. This resuit is a discrète 
time version of Anosov's theorem [1] which is one of few gênerai results about fully 
coupled averaging. Actually, we prove our resuit under a gênerai condition which is 
satisfied in essentially ail known cases where the averaging principle holds true and it 
does not rely on existence of smooth invariant measures as in Anosov's approach. 

Recently, quite a few papers dealt with a class of diffeomorphisms called stably 
ergodic (see, for instance, [5]) which are volume preserving ergodic diffeomorphisms 
having a C2-neighborhood of volume preserving ergodic diffeomorphisms. If each fx 
from our parametric family belongs to such a neighborhood then our results yield 
an L1-convergence in the averaging principle. Moreover, we need ergodicity only 
for almost ail x's which suggests to study parametric families of volume preserving 
diffeomorphisms which are ergodic for almost ail parameter values. When convergence 
in the averaging principle in a fully coupled setup (1.2) holds true for any reasonable 
<ï> we can naturally regard this as a manifestation of compatibility of /x's or their 
stability within our parametric family. 

Observe that our resuit works in the case when ail fxs are C2 expanding transfor
mations of M which always possess fast mixing smooth invariant measures [ix. On 
the other hand, close relatives of expanding transformations Anosov and Axiom A 
diffeomorphism do not possess, generically, smooth invariant measures. Still, relying 
on spécifie properties of Axiom A System in a neighborhood of an attractor we will be 
able to carry out necessary estimâtes for \ix being either Lebesgue or corresponding 
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