Astérisque

ARTUR O. LOPES PHILIPPE THIEULLEN Sub-actions for Anosov diffeomorphisms

Astérisque, tome 287 (2003), p. 135-146 <http://www.numdam.org/item?id=AST 2003 287 135 0>

© Société mathématique de France, 2003, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SUB-ACTIONS FOR ANOSOV DIFFEOMORPHISMS

by

Artur O. Lopes & Philippe Thieullen

Dedicated to Jacob Palis

Abstract. — We show a positive Livsic type theorem for C^2 Anosov diffeomorphisms f on a compact boundaryless manifold M and Hölder observables A. Given $A: M \to \mathbb{R}$, α -Hölder, we show there exist $V: M \to \mathbb{R}$, β -Hölder, $\beta < \alpha$, and a probability measure μ , f-invariant such that

$$A \leqslant V \circ f - V + \int A \, d\mu.$$

We apply this inequality to prove the existence of an open set \mathcal{G}_{β} of β -Hölder functions, β small, which admit a unique maximizing measure supported on a periodic orbit. Moreover the closure of \mathcal{G}_{β} , in the β -Hölder topology, contains all α -Hölder functions, α close to one.

1. Introduction

We consider a compact riemannian manifold M of dimension $d \ge 2$ without boundary and a C^2 transitive Anosov diffeomorphism $f: M \to M$. The tangent bundle TMadmits a continuous Tf-invariant splitting $TM = E^u \bigoplus E^s$ of expanding and contracting tangent vectors. We assume M is equiped with a riemannian metric and there exists a constant C(M), depending only on M and the metric and constants depending on f

$$0 < \Lambda_s < \lambda_s < 1 < \lambda_u < \Lambda_u$$

such that for all $n \in \mathbb{Z}$

$$\begin{cases} C(M)^{-1}\lambda_u^n \leqslant \|T_x f^n \cdot v\| \leqslant C(M)\Lambda_u^n & \text{for all } v \text{ in } E_x^u, \\ C(M)^{-1}\Lambda_s^n \leqslant \|T_x f^n \cdot v\| \leqslant C(M)\lambda_s^n & \text{for all } v \text{ in } E_x^s. \end{cases}$$

2000 Mathematics Subject Classification. - 37D20.

Key words and phrases. — Anosov diffeomorphisms, minimizing measures.

A.L.: Partially supported by PRONEX-CNPq - Sistemas Dinâmicas and Institute of Millenium - IMPA.

Ph.T.: Partially supported by CNRS URA 1169.

Livsic theorem [5] asserts that, if $A : M \to M$ is a given Hölder function and satisfies $\int A d\mu = 0$ for all *f*-invariant probability measure μ , then A is equal to a coboundary V (which is Hölder too), that is:

$$A = V \circ f - V.$$

What happens if we only assume $\int A d\mu \ge 0$ for all *f*-invariant probability measure μ ? We denote by $\mathcal{M}(f)$, the set of *f*-invariant probability measures and $m(A, f) = \sup \{ \int A d\mu \mid \mu \in \mathcal{M}(f) \}.$

For a β -Holder function V

$$\operatorname{H\"old}_{\beta}(V) = \sup_{0 < d(x,y)} \left\{ \frac{|V(x) - V(y)|}{d(x,y)^{\beta}} \right\}.$$

We prove the following:

Theorem 1. — Let $f: M \to M$ be a C^2 transitive Anosov diffeomorphism on a compact manifold M without boundary. For any given α -Hölder function $A: M \to \mathbb{R}$, there exists a β -Hölder function $V: M \to \mathbb{R}$, that we call sub-action, such that:

$$A \leqslant V \circ f - V + m(A, f),$$

and

$$\beta = \alpha \frac{\ln(1/\lambda_s)}{\ln(\Lambda_u/\lambda_s)}, \quad \text{H\"old}_{\beta}(V) \leqslant \frac{C(M)}{\min(1 - \lambda_u^{-\alpha}, 1 - \lambda_s^{\alpha})^2} \text{H\"old}_{\alpha}(A)$$

where C(M) is some constant depending only on M and the metric.

By analogy with Hamiltonian mechanics and the way we define V from A, we may interpret A as a lagrangian and V as a sub-action. This result extends a similar one we obtained in [4] for expanding maps of the circle (see [2] [6] for related results). The same techniques of [4] also apply for the one-directional shift as it is mentioned in [4].

The proof we give here is for bijective smooth systems, and we obtain V continuous in all M. Our result can not be derived (via Markov partition) directly from an analogous result for the bi-directional shift.

Corollary 2. — The hypothesis are the same as in theorem 1. The following statements are equivalent:

- (i) $A \ge V \circ f V$ for some bounded measurable function V,
- (ii) $\int A d\mu \ge 0$ for all f-invariant probability measure μ ,

(iii) $\sum_{k=0}^{p-1} A \circ f^k(x) \ge 0$ for all $p \ge 1$ and point x periodic of period p,

(iv) $A \ge V \circ f - V$ for some Hölder function V.

The proof of that corollary is straightforward and uses (for (iii) \Rightarrow (ii)) the fact that the convex hull of periodic measures is dense in the set of all *f*-invariant probability measures for topological dynamical systems satisfying the shadowing lemma (see Lemma 5). F. Labourie suggested to us the following corollary:

Corollary 3. — The hypothesis are the same as in theorem 1. If A satisfies $\int A d\mu \ge 0$ for all $\mu \in \mathcal{M}(f)$ and $\sum_{k=0}^{p-1} A \circ f^k(x) > 0$ for at least one periodic orbit x of period p then $\int A d\lambda > 0$ for all probability measure λ giving positive mass to any open set.

Again the proof is straitforward: $R = A - V \circ f + V \ge 0$ for some continuous V and $\int R d\lambda = 0$ for such a measure λ implies R = 0 everywhere and in particular $\sum_{k=0}^{p-1} A \circ f(x) = 0$ for all periodic orbit x.

Any measure μ satisfying $\int A d\mu = m(A, f)$ is called a maximizing measure and since A is continuous, such a measure always exists. It is then natural to ask the following two questions: For which A, the set of maximizing measures is reduced to a single measure? In the case there exists a unique maximizing measure, to what kind of compact set, the support of this measure looks like ?

The following theorem gives a partial answer for "generic" functions A.

Theorem 4. — Let $f : M \to M$ be a C^2 transitive Anosov diffeomorphism and $\beta < \ln(1/\lambda_s)/\ln(\Lambda_u/\lambda_s)$. Then there exists an open set \mathcal{G}_β of β -Hölder functions (open in the C^β -topology) such that:

(i) any A in \mathcal{G}_{β} admits a unique maximizing measure μ_A ;

(ii) the support of μ_A is equal to a periodic orbit and is locally constant with respect to $A \in \mathcal{G}_{\beta}$;

(iii) any α -Hölder function with $\alpha > \beta \ln(\Lambda_u/\lambda_s)/\ln(1/\lambda_s)$ is contained in the closure of \mathcal{G}_{β} (the closure is taken with respect to the \mathcal{C}^{β} -topology).

The proof of Theorem 4 is a simplification of what we gave in [4] in the onedimensional setting. The existence of sub-actions is in both cases the main ingredient of the proof.

Now we will concentrate in one of our main results, namely, Theorem 1; the basic idea is the following: given a finite covering of M by open sets $\{U_1, \ldots, U_l\}$ with sufficiently small diameter, we construct a Markov covering (and not a Markov partition) $\{R_1, \ldots, R_l\}$ of rectangles: each R_i contains U_i and satisfies

$$x \in U_i \cap f^{-1}(U_j) \Longrightarrow f(W^s(x, R_i)) \subset W^s(f(x), R_j),$$

where $W^s(x, R_i)$ denotes the local stable leaf through x restricted to R_i . We then associate to each R_i a local sub-action V_i , defined on R_i by:

$$V_i(x) = \sup \left\{ S_n(A - m) \circ f^{-n}(y) + \Delta^s(y, x) \mid n \ge 0, \ y \in W^s(x, R_i) \right\}$$

where $\Delta^{s}(y, x)$ is a kind of cocycle along the stable leaf $W^{s}(x)$:

$$\Delta^{s}(y,x) = \sum_{n \ge 0} (A \circ f^{n}(y) - A \circ f^{n}(x)),$$

and where $S_n(A - m) = \sum_{k=0}^{n-1} (A - m) \circ f^k$.

This family $\{V_1, \ldots, V_l\}$ of local sub-actions satisfies the inequality:

$$x \in U_i \cap f^{-1}(U_j) \Longrightarrow V_i(x) + A(x) - m \leqslant V_j \circ f(x)$$

and enable us to construct a global sub-action V:

$$V(x) = \sum_{i=1}^{l} \theta_i(x) V_i(x)$$

where $\{\theta_1, \ldots, \theta_l\}$ is a smooth partition of unity associated to the covering $\{U_1, \ldots, U_l\}$. The main difficulty is to prove that each V_i is Hölder on R_i .

2. Existence of sub-actions

We continue our description of the dynamics of transitive Anosov diffeomorphisms (for details information, see Bowen's monography [3]). All the results we are going to use depend on a small constant of expansiveness $\varepsilon^* > 0$ (by definition this constant says that any pseudo-orbit can be followed by true orbits) depending on f and M in the following way:

$$\varepsilon^* = C(M)^{-1} \min\left(\frac{\lambda_u - 1}{\|D^2 f\|_{\infty}}, \frac{1 - \lambda_s}{\|D^2 f\|_{\infty}}\right)$$

where $C(M) \ge 1$ is a constant depending only on M and the riemannian metric. At each point x, one can define its local stable manifold $W^s_{\varepsilon}(x)$ for every $\varepsilon < \varepsilon^*$:

$$W^s_{\varepsilon}(x) = \left\{ y \in M \mid d(f^n(x), f^n(y)) \leqslant \varepsilon \; \forall \, n \ge 0 \right\}$$

which are C^2 embedde closed disks of dimension $d^s = \dim E_x^s$ and tangent to E_x^s . In the same manner, $W_{\varepsilon}^u(x)$ is defined replacing f by f^{-1} . If two points x, y are close enough, $d(x, y) < \delta$, then $W_{\varepsilon}^s(x)$ and $W_{\varepsilon}^u(y)$ have a unique point in common, called [x, y]:

$$[x,y] = W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y) = W^s_{\varepsilon^*}(x) \cap W^u_{\varepsilon^*}(y),$$

where $\varepsilon = K^* \delta$ and K^* is again a large constant depending on M and f:

$$K^* = \frac{C(M)}{\min(1 - \lambda_u^{-1}, 1 - \lambda_s)}$$

This estimate is in fact a particular case of Bowen's shadowing lemma:

Lemma 5 (Bowen). — If δ is small enough, $\delta < \varepsilon^*/K^*$, if $(x_n)_{n \in \mathbb{Z}}$ is a bi-infinite δ -pseudo-orbit, that is, $d(f(x_n), x_{n+1}) < \delta$ for all $n \in \mathbb{Z}$, then there exists a unique true orbit $\{f^n(x)\}_{n \in \mathbb{Z}}$ which ε -shadow $(x_n)_{n \in \mathbb{Z}}$, that is $d(f^n(x), x_n) < \varepsilon$ for all $n \in \mathbb{Z}$ with $\varepsilon = K^* \delta$.

This lemma (see [3]) for proof) is the main ingredient for constructing (dynamical) rectangles. A rectangle R is a closed set of diameter less than ε^*/K^* satisfying:

$$x, y \in R \Longrightarrow [x, y] \in R.$$

We will not use the notion of proper rectangles but will use instead the notion of Markov covering.