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ON R A N D O M A N D MEAN EXPONENTS FOR UNITARILY 
INVARIANT PROBABILITY MEASURES ON GLn(C) 

by 

Jean-Pierre Dedieu & Mike Shub 

Dedicated to Jacob Palis for his sixtieth birthday. 
Abstract. — We consider unitarily invariant probability measures on GLrj(C) and 
compare the mean of the logs of the moduli of the eigenvalues of the matrices to the 
Lyapunov exponents of random matrix products independently drawn with respect 
to the measure. We prove that the former is always greater or equal to the latter. 

1. Introduction 

Given a probability measure /i on the spaee of invertible n x n complex matrices 
satisfying a mild integrability condition, we have, by Oseledec's Theorem, n random 
exponents r\ ^ r«2 ̂  • • • ^ rn ^ — oo such that for almost every séquence ... gk • • - 9i £ 
GLn(C) the limit lim £ log \\gk • • • 9iv\\ exists for every v G Cn \ {0} and equals one 
of the r7, i = 1.. . n, see Gol'dsheid and Margulis [4] or Ruelle [8] or Oseledec [7]. 
The numbers r i , . . . , rn are called Lyapunov exponents. In our context we may call 
them random Lyapunov exponents or even just random exponents. If the measure is 
concentrated on a point A, thèse numbers lim y} log || A""u|| are log | A11, . . . , log |Àn| 
where Xt(A) = Ày, 1 = 1... r?, are the eigenvalues of A written with multiplicity and 
|Ai| > |A2| |A„|. 

The integrability condition for Oseledec's Theorem is 

g G GLn(C) —> log+(||^||) is /i — integrable 

where for a real valued function / , /+ = max[0, / ] . Here we will assume more so that 
ail our intégrais are defined and finite, namely: 

(*) g e GLn(C) ^ log+(||#||) and log"1"(11|) are //-integrable. 
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2 J.-P. DEDIEU & M. SHUB 

We will prove: 

Theoreml. — If \i is a unitarily invariant measure on GLn(C) satisfying (*) then, 
for k = 1,. . . , n, 

A6GLn(C) i=1 

kd 
\og\Xt(A)\du(A) > 

k 

i=i 
d+d 

By unitary invariance we mean /JL(U(X)) — \i{X) for ail unitary transformations 
U G Un(C) and ail /i-measurable X Ç GLn(C). 

Corollary 2 

'AeGLn(C) 

vrn 

vr 
\og+\Xi(A)\dfi(A) > 

n 

i-1 

dd 

Theorem 1 is not true for gênerai measures on GLn(C) or GLn(M) even for n = 2. 
Consider 

Ai = 
' 1 0 
1 1 

A2 = d+dd1dr 
0 1 

and give probability 1/2 to each. Then the left hand intégral is zéro but as is easily 
seen the right hand sum is positive. So, in this case the inequality goes the other 
way. We do not know a characterization of measures which make Theorem 1 valid. 
We would find such a characterization interesting. 

The numbers Y2i=i ri have a direct géométrie interprétation. Let Gn,fc(C) dénote 
the Grassmannian manifold of k dimensional vector subspaces in Cn, A\Gn^, the 
restriction of A to the subspace Gn^ and v the natural unitarily invariant probability 
measure on Gn,k(C). 

Theorem 3. — If /j, is a unitarily invariant probability measure on GLn(C) satisfying 
(*) then, 

k 

i=l 
dd 

x++xw14xn,k)\dv{Gn,k)dii{A) 
log | Det (A\Gn,k)\dv{Gn,k)dii{A) 

We may then restate Theorem 1 in the form we prove it. 

Theorem 4. — If ji is a unitarily invariant probability measure on GLn(C) satisfying 
(*) then, for k = 1,. . . , n 

AeGLn(C) i=1 

k 
;iog|A.(^)|d/x(A) 

vrd 
JAeGLn(C) JG„,keGn,k(C) 

\og\Det (A\GnM)\du(Gn.k)d^(A). 
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There is a considérable literature on random Lyapunov exponents and quite gênerai 
criteria which guarantee that they are non-zero and even distinct. According to 
Bougerol and Lacroix in 1985 in [2] "The subject matter initiated by Bellman was 
fully developed by Furstenberg, Guivarc'h, Kesten, Le Page and Raugi." We refer 
to [2] for références prior to 1985 and to three others: Gol'dsheid and Margulis [4], 
Guivarc'h and Raugi [5] and Ledrappier [6]. 

Our interest in Theorem 1 and Theorem 4 was motivated by some questions in 
dynamical Systems theory, see Burns, Pugh, Shub and Wilkinson [3]. Theorem 1 for 
k = 1, the orthogonal group and GLn(IR) was raised there. 

We also get a version of Theorem 4 without the logarithms. 

Theorem 5. — Let JJL be a unitarily invariant probability measure on GLn(C) satisfying 
(*) and 1 ̂  k ^ n. Then 

AGGLn(C) i=1 

k 
Xi(A)\dfi(A) > 

JAeGhri{C) JGn,keGn,k(Q 
IDet (A\Gn.k)\dv(Gn,k)du(A). 

There is a spécial case of Theorems 4 and 5 that is good to keep in mind. Our 
proof relies it. 

Let A e GLn(C) and p be the Haar measure on Un(C) (the unitary subgroup of 
GLn(C)) normalized to be a probability measure. In this case Theorem 5 becornes: 

Theorem 6. — Let A e GLn(C). Then, forl^k^n, 

/f/GUN(C) ' 

k 

i=l 
lozWAUAMduiU) > 

'Gn,fcGGn,fc(C) 
loglDet (A\Gn,k)\dv(Gn,k) 

and 

'ueun(C) 

k 

i-l 
\\AUA)\du(U) > 

Gn,fe6Gn,fe(C) 
|Det (A\Gn,k)\dv{Gn,k). 

When k = 1, |Ài(f/A)| = p(U'A) is the spectral radius of UA. The Grassmannian 
manifold is identical to the complex projective space Pn_i(C). Intégration on this 
manifold can be reduced to the unit sphère §2n_1 in R2n so that 

Corollary 7. — Let A G GLn(C). Then 

uevn(C) 
log\p(UA)\dfi(U) > 

!xeg2n-l 
log ||Ar||di/(x) 

and 

'Ueun(C) 
\p(UA)\dp(U) > 

Ax\\dv( 
\\Ax\\dv(x). 

We expect a similar resuit for orthogonally invariant probability measures on 
GLn(R) but we have not proven it. Here we content ourselves with the case n = 2. 
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Theorem 8. — Let \i be a probability measure on GL2(M) satisfying 

g G GL2(M) —» log+(||g||) and log+(||g_11|) are /i-integrable. 

(a) If LL is a SÛ2(M) invariant measure on GLt(IR) then, 

M€GLj(R) 
l o g l A ^ y l ) ! ^ ) -

AGGL+(M) Jxes1 
loglIAdldS^xW/iM) 

(b) If /j, is a SÛ2(M) invariant measure on GL2 (M), whose support is not contained 
in IRĜ fM) z.e. m the set of scalar multiples of orthogonal matrices, then 

fAeGL-(R) 
loglAi^ld^A) > 

V4GGL~(M) Jxes1 
log\\Ax\\dS1(x)d/i(A). 

Here GL^(R) (resp. GL2 (M)) is the set of invertible matrices with positive (resp. 
négative) déterminant. Theorem 8 is proved in section 5. 

2. A More General Theorem 

Theorem 4 is actually a spécial case of the much more gênerai Theorem 11 below. 
Before we state Theorem 11 we need some preliminaries. 

A flag F in Cn is a séquence of vector subspaces of Cn: F — (Fi, F2,. . . , Fn), with 
Fi C and Dim Fi = i. The space of flags is called the flag manifold and we dénote 
it by Fn(C). Now it is easy to see that Fn(C) may be represented by GLn(C)/Rn(C) 
or by Un(C)/Tn(C), where Mn(C) is the subgroup of GLn(C) of upper triangular 
matrices and Tn(C) is the subgroup of GLn(C) consisting of diagonal matrices with 
complex numbers of modulus 1, so Tn(C) = Un(C) fl Mn(C). Regarding Fn(C) as 
Un(C)/Tn(C) we see that Fn(C) has a natural Un(C)-invariant probability measure. 

An invertible linear map A : Cn —» Cn naturally induces a map A$ on flags by 

At(F1,F2,...,Fn) = (AFl,AF2,...,AFn). 

The flag manifold and the action of a linear map A on Fn(C) is closely related to 
the QR algorithm, see Shub and Vasquez [9] for a discussion of this. In particular if F 
is a fixed flag for A i.e. A$F = F, then A is upper triangular in a basis corresponding 
to the flag F, with the eigenvalues of A appearing on the diagonal in some order: 
Xi{A, F), . . . , \n(A, F). 

Let 
G = {A G GLn(C) : |Ai(A)| > \X2(A)\ > ••• > \\n(A)\}. 

Then, there is a unique flag F such that A$(F) = F and such that Xi(A, F) — Xi(A) 
for i = 1,. . . , n. We call this flag the QR flag of A and let QR : G -> Fn(C) be the 
map which associâtes to A G G its QR flag. It follows from Shub-Vasquez [9] and the 
discussion of fixed point manifolds below that QR is a smooth mapping. 

Now fix A e GLn(C), define Un{C)A = {UA : U G Un(C)} and consider GA = 
Gfl(Un(C)A). Assume that GA / 0- If we restrict QR to GA then QR : G^ -> Fn(C) 
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