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ANOSOV GEODESIC FLOWS FOR EMBEDDED SURFACES 

by 

Victor J. Donnay & Charles C. Pugh 

Abstract. — In this paper we embed a high genus surface in RA so that its géodésie 
flow h as no conjugale points and is Anosov, despite the fact that its curvature cannot 
be everywhere négative. 

1. Introduction 

At the International Conférence on Dynamical Systems held in Rio de Janeiro in 
July, 2000, Michael Hernian asked whether the géodésie flow for an enibedded surface 
in R'] can be uniformly hyperbolic, i.e., Anosov. Using techniques from our paper [5] 
and a suggestion of John Franks and Clark Robinson, we answer Hermairs question 
affirmatively. The enibedded surface looks like a spherical shell with niany holes 
drilled through it. See Figures 1 and 2. 

The Lobachevsky-Hadamard Theoreni states that if a Riemann nianifold lias nég­
ative sectional curvature tlien its géodésie flow is Anosov. The célébrated thesis of 
Anosov [1] shows that this implies ergodicity, in fact the Bernoulli property, a stronger 
form of ergodicity. 

In [2], Biirns and Donnay showed that every surface M embeds in R'̂  so that 
its géodésie flow is Bernoulli; liowever, this cannot be a conséquence of M having 
négative curvature. For a compact surface M C R** necessarily lias régions of positive 
curvature, the standard explanation being that there is a smallest sphère S which 
contains M, and there are points at which S is tangent to M. At thèse points the 
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FIGURE 1. An embedded surface formed by Connecting two concentric 
sphères with many tubes. 

FIGURE 2. The radiolarian Aulonia hexagona, a marine micro-organism, 
as it appears through an électron microscope, by S.A. Kling. 

curvature of M is positive. By continuity, the curvature of M is positive at nearby 
points too. The Bernoulli géodésie flows constructed by Burns and Donnay employ 
"focusing caps" to control the positive curvature. However, the caps are bounded 
by closed geodesics on which the curvature is zéro, preventing uniform hyperbolicity. 
If the caps are perturbed to destroy thèse parabolic orbits the System can become 
non-ergodic [3, 4]. 

Instead of using caps, we use tubes of négative curvature together with the notion 
of a finite horizon geometry, which we introduced in [5], and are thereby able to show 

Theorem A. — There exist embedded surfaces in for which the géodésie flows are 
Anosov. 

As an extension of Theorem A we discuss the immersed case, which has interest 
when the surface is not orientable. 

Theorem B. - There exist immersed non-orientable surfaces in RA for which the 
géodésie flows are Anosov. 

The basic ingrédient in our construction is illustrated in Figure 3; connect two flat 
tori (they are not embedded in R,]) via a tube of négative curvature. The géodésie 
flow for this genus two surface is Bernoulli but not uniformly hyperbolic - since there 
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FIGURE 3. Two flat tori joined by a negatively curved tube. 

are periodic geodesics lying completely in a flat région. If we now connect the two 
tori by enough tubes to produce a finite horizon pattern (see Section 2), i.e. every 
géodésie enters a tube in a bounded time, then the géodésie flow for this high genus 
surface is Anosov. To make an embedded Anosov example, we follow the suggestion 
of Franks and Robinson: reproduce the construction using very large and nearly flat 
concentric sphères instead of tori, again in a finite horizon pattern of tubes. 

Remark. — Theorems A and B give the existence of high genus surfaces in R3 with 
Anosov géodésie flows, but we do not know a good lower bound on the genus. In [6], 
Wilhelm Klingenberg shows that no surface whose Riemann structure has conjugate 
points, which are produced by a surfeit of positive curvature, can have an Anosov 
géodésie flow. Hence our construction also provides examples of embedded surfaces 
without conjugate points. By Klingenberg's resuit, the sphère and torus never have 
Riemann structures whose géodésie flows are Anosov. So in particular, thèse surfaces 
cannot embed in R3 in such a way that their géodésie flows are Anosov. But what 
about the bitorus? Can it embed in R3 so that its géodésie flow is Anosov? Is it at 
least possible to embed the bitorus so that its metric has no conjugate points? 

2. Finite Horizon 

Let M be a surface equipped with a Riemann structure. A family C of curves 
Ci , . . . , Ck in Al gives Al <fi-finite horizon if every unit length géodésie crosses at least 
one curve in C at an angle ^ <p. In [5] we show in détail how to choose C that gives 
Al finite horizon, when Al is a surface embedded in R3 and its Riemann structure is 
the one it inherits from the embedding. Here is an outline of the construction. 

We first construct a fine, smooth triangulation of M whose triangles have uniformly 
bounded eccentricity and nearly géodésie edges. (The eccentricity of a triangle is the 
reciprocal of its smallest vertex angle.) We then draw small géodésie dises at the 
vertices of the triangulation, and a string of N "pearl dises" along each edge of the 
triangulation outside the vertex dises. Finally, we draw 2N + 2 "wing dises" parallel 
to the string of pearl dises. Altogether this gives 9(N -f 1) dises per triangle. The 
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pearl and wing dises have radius r, which is much less than the radius R of the vertex 
dises, and this makes the pearl and wing dises along one edge of a triangle disjoint 
from those along a différent edge. 

Technically, once we have a bound on the eccentricity of the triangles that appear 
in our triangulations, we choose R and N. We then keep R and N fixed, while we 
dilate the surface by a factor of 2n, n —> oc, making ever finer triangulations of the 
dilated surface that have nearly linear triangles of roughly unit size. The radii r of 
the pearl and wing disks vary depending on the length of the edge of the triangle but 
lie in a compact interval. 

With respect to the flat Riemann structure, the dise pattern for a triangle is shown 
in Figure 4. Every unit segment starting inside the flat triangle must cross the bound-

FlGURE 4. The pattern of dises for a linear triangle that gives the finite 
horizon property. 

ary circles of thèse dises at some positive angle. By compaetness, they cross at some 
uniformly positive angle (/>, a fact that remains true under small perturbations. For 
example, if we shrink ail the dises by a factor \x < 1, where 1 — /JL is small, they still give 
the finite horizon property for unit segments. Similarly, the finite horizon property 
still holds if the flat metric is replaced by a nearly flat metric. 

Dénote by 2nM the surface gotten by dilating M by a factor 2n. The Riemann 
structure of 2nM restricted to a nearly linear triangle T of roughly unit size is nearly 
flat. Thus, the géodésie dises of radius jir and /JLR laid down in the pattern of Figure 4 
are disjoint and give the finite horizon property for unit geodesics on 2nM when n is 
large. 

We then flatten thèse disjoint géodésie dises by pushing each into the tangent plane 
at its center. Slightly smaller round dises lie in the flattened géodésie dises, and they 
still give the finite horizon property. The net effect is that the given surface M is 
replaced by a new one, 2" M. with diameter roughly 2n, and having a great number 
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