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INJECTIVITY OF C1 MAPS M2 -> M2 AT INFINITY A N D 

PLANAR VECTOR FIELDS 

by 

Carlos Gutierrez & Alberto Sarmiento 

Abstract. — Let X : R2 \ D„ R2 be a C1 map, where cr > 0 and Da = {p G R2 : 
IblK^b 
(i) If for some s > 0 and for ail p G R2 \ Da - no eigenvalue of DX(p) belongs to 
(—£\oo), there exists s ^ cr, such that À'|r2x7J is injective; 
(ii) If for some e > 0 and for ail p G R2 no eigenvalue of DX(p) belongs to 
(-£-,0] U {z G C : ^ 0}, there exists p0 G M2 such that the point oo, of the 
Riemann sphère M2 U {oo}, is either an attractor or a repellor of x' = X{x) + po. 

1. Introduction 

The study of planar vector fielcls around singularities lias somehow motivated the 
présent work. A sample of tins study is the work doue by C. Chicone, F. Dumortier, 
J. Sotomayor, R. Roussarie, F. Takens. See for instance [Chi, DRS, Rou, Tak]. 
Here we study the behavior of a vector field X : R2 —> R2 around infinity. While a 
C1 vector field around a singularity is quite regular, we work under conditions that 
do not imply, a priori, any regularity of the vector field around infinity. Given an 
open subset U of M2 and a C1 map Y : U —» M2, we shall dénote by Spec(F) = 
{eigenvalues of DY(p) : p G U}. Our main resuit is the following 

Theoreml. — Let X = (f,g) : R2 \ Da R2 be a C1 map, where a > 0 and 
Da = [p e R2 : ||p|| ^ a}. The following is satisfied: 

(i) if for some e > 0, Spec(A) is disjoint of (—e, oc), then there exists s ^ a, such 
that X\R2^ç> is injective; 
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(ii) if for some s > 0, Spec(X) is disjoint of (—£,0] U {z G C : $t(z) ^ 0}, then, 
there exists po G E2 such that the point oo, of the Riemann sphère E2 U {oo},zs either 
an attractor or a repellor of x' — X(x) -f Po-

To give an idea of the proof of this resuit, let us introduce the following définition. 
Let X = (/, g) :R2\Da E2 be a C1 map as in Theorem 1. Since / : E2 \ Da -> 

E is a C1 submersion, q G E2 —» Vf^(q) — ( — fy(q),fx(q)), the Hamiltonian vector 
field of / , has no singularities. Let go(x,y) = xy and consider the set 

B = {(x, y) G [0, 2] x [0, 2] : 0 < x + y ^ 2}. 

We will say that A C E2 is a HRC (Half-Reeb Component) of V/# (see figure 1) 
if there is a homeomorphism h : B ^ A which is a topological équivalence between 

and Vgo^ls, and such that 

(1) h({(x,y) E B : x + y = 2}) (called the compact edge of A) is a smooth segment 
transversal to V/9^ in the complément of h(l, 1), and 

(2) both h({(x,y) G £ : x = 0}) and E B : y = 0}) are full half-
trajectories of V/^ . 

.4 

21 
B 

0 2 

h 

7 
compact edge of A 

FIGURE 1. A half-Reeb component. 

Observe that A may not be a closed subset of M2. 
Proceed to give an idea of the proof of Theorem 1. First, we shall prove that: 

Proposition 1. — if X — (f,g) : M2 \ Da —> R2 is a Cl rnap as m Theorem 1, then 
any HRC ofV&f ts a bounded subset ofW2. 

This is used to prove 

Theorem 2. — ifY — (f,g) : M2 —> M2 is a Cl map such that, for some e > 0, 
Spec(F) D (—e,e) — 0, then Y is injective. 
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Roughly speaking about Theorem 2, if the foliation induced by V/ has no half-
Reeb components then, V/ is topologically équivalent to the foliation, on the (x, y)-
plane, induced by the form dx (the foliation is made up by ail the vertical straight 
lines). The injectivity of X will follow from the fact that V/ and V r̂ are linearly 
independent everywhere. 

Sections 3 and 4 are devoted to prove 

Corollary 2. — if X = (f,g) : MÏ2\Da —> IR2 is a C1 map as in Theorem 1, then there 
exists a smooth compact dise E such that V/#, restricted to M2 \ E, is topologically 
équivalent to the foliation, on E2 \ D\, induced by dx. 

Observe that the foliation, on M2 \ D\, induced by dx has exactly two tangencies 
with dD\ (at (1,0) and (0,1)) which are "quadratic" and "externat". Let us say a 
little more about what is proved in Section 3 and 4: We show, in Section 3, that given 
any generic smooth compact dise F D Da the number of "external" tangencies of V/ 
with dF is equal to 2 plus the number of "internai" tangencies of V/ with dF. We 
show, in Section 4, that the dise F can be deformed to a smooth compact dise E so 
that the referred "external" and "internai" tangencies cancel in pairs yielding exactly 
2 tangencies which are "external". 

Using Theorem 2 we obtain 

Proposition!. — Let X be as in Corollary 2. If X takes dE diffeomorphically to a 
circle then X\^2^E may be extended to a map which satisfies conditions of Theorem 
2 and so it is injective. 

The proof of item (ii) of Theorem 1 is finished in Sections 5 and 6 by showing that, 
under conditions of Corollary 2, the dise E can be deformed so that, for the resulting 
new dise, still denoted by E, V/^|^2^£, is topologically équivalent to the foliation, 
on M2 \ D\, induced by dx and moreover X takes dE diffeomorphically to a circle. 
Then the resuit follows from Proposition 2. 

The item (ii) of Theorem 1 follows from the corresponding item (i) and some 
previous Gutierrez and Teixeira work [G-T]. 

Throughout this article, given an embedded circle C C M2, the compact dise (resp. 
open dise) bounded by C will be denoted by D{C) (resp. D(C)). Also, we will 
freely use the fact that the assumptions of the theorem are open in the Whitney C1-
topology. In this way, when possible and necessary, we will assume that X is smooth 
and that it satisfies some generic property which will be made précise at the proper 
place. 

Acknowledgements. — We wish to thank referee's comments which have been appre-
ciated and incorporated into this work. 
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2. A global injectivity resuit 

We shall need the following lemma which is contained in the proof of [Gut, Lemma 
2.51. For 6 G IR : let Ro dénote the linear rotation 

Ro = 
cosO — siné^ 
sin 6 cos 0 ) 

Lemma 1. — Let X — (f\g) : M2 \ Da —> M? be a C1 map as in Theorem 1. Suppose 
that V^V has an HRC which is unbounded (as a subset ofM^2) but whose projection 
on the x-axis is a compact interval Then, there exists S > 0 such that, for ail 
6 G (—5,0) U (0,s) fo has a HRC whose projection on the x-axis is an interval of 
infinité length; here (fo,go) = Ro ° X o R_Q. 

The proof of Proposition 1 and Theorem 2 can be found in [CGL] but, as we have 
already said and for sake of completeness, they are included here. 

Proposition 1. — Let X = (/,g) : M2 \~Da —> E2 be a C1 map as in Theorem 1. Then 
any HRC ofV^f is a bounded subset o/IR2. 

Proof. — Let A be a half Reeb component for / . Let II : M2 —>• R be the projection 
on the first coordinate. By composing with a rotation if necessary, in the way that 
is stated in Lemma 1, we may suppose that II(.4.) is an interval of infinité length, 
say \b,oo). We may also assume that X is smooth and - -by Thom's Transversality 
Theorem for jets [G-G]- that 

(al) the set 
T={(x,y)eR2:Ux,y)=0} 

is rnade up of regular curves; 
(a2) There is a discrète subset A of T such that if p G T \ A (resp. p G A), V# / 

has quadratic contact (resp. cubic contact) with the vertical foliation of M2. 
Then, if a > b is large enough, 

(b) for any x ^ a, the vertical line II-^x) intersects exactly one trajectory ax C A 
of V /#U such that II(ax.) fl (x, oo) = 0; in other w ôrds, x is the maximum for the 
restriction II|a<r. 

It follows that 

(c) if x ^ a and p G ax fl II"1 (x) then p G T n A \ A. 

Let Tm be the set of p G A such that, for some x > a, p G ax fl Il_1(x). Notice that, 
for every x ^ a, ax H Il_1(x) is a finit e set; nevertheless, by (b), (c) and by using 
Thom's Transversality Theorem for jets, we may get the following stronger statement: 

(d) There is a séquence F = {ai, a2,..., a-i, • • • } in [a, oo), which may be either 
empty or finite or else countable, such that if x G F (resp. x G [a, oo) \ F), then 
n_1(x) H Tm. is a two-point-set (resp. a one-point-set). 
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