Astérisque

YVES LAURENT b-functions and integrable solutions of holonomic \mathcal{D} -module

Astérisque, tome 296 (2004), p. 145-165

http://www.numdam.org/item?id=AST_2004_296_145_0

© Société mathématique de France, 2004, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

b-FUNCTIONS AND INTEGRABLE SOLUTIONS OF HOLONOMIC *D*-MODULE

by

Yves Laurent

À Jean-Pierre Ramis, à l'occasion de son 60^e anniversaire.

Abstract. — A famous theorem of Harish-Chandra shows that all invariant eigendistributions on a semi-simple Lie group are locally integrable functions. We give here an algebraic version of this theorem in terms of polynomials associated with a holonomic \mathcal{D} -module.

Résumé (b-fonctions et solutions intégrables des modules holonomes). — Un célèbre théorème de Harish-Chandra montre que les distributions invariantes propres sur un groupe de Lie semi-simple sont des fonctions localement intégrables. Nous donnons ici une version algébrique de ce théorème en termes de polynômes associés à un \mathcal{D} -module holonome.

Introduction

Let $G_{\mathbb{R}}$ be a real semisimple Lie group and $\mathfrak{g}_{\mathbb{R}}$ be its Lie algebra. An *invariant eigendistribution* T on $G_{\mathbb{R}}$ is a distribution which is invariant under conjugation by elements of $G_{\mathbb{R}}$ and is an eigenvector of every bi-invariant differential operator on $G_{\mathbb{R}}$. The main examples of such distributions are the characters of irreducible representations of $G_{\mathbb{R}}$. A famous theorem of Harish-Chandra sets that all invariant eigendistributions are L^1_{loc} -functions on $G_{\mathbb{R}}$ [4]. After transfer to the Lie algebra by the exponential map, such a distribution satisfies a system of partial differential equations.

In the language of \mathcal{D} -modules, these equations define a holonomic \mathcal{D} -module on the complexified Lie algebra \mathfrak{g} . We call this module the Hotta-Kashiwara module as it has been defined and studied first in [6]. In [20], J. Sekiguchi extended these results to symmetric pairs. He proved in particular that a condition on the symmetric pair is needed to extend Harish-Chandra theorem. In several papers, Levasseur and Stafford [15, 16, 17] gave an algebraic proof of the main part of Harish-Chandra theorem.

2000 Mathematics Subject Classification. - 35A27, 35D10, 17B15.

Key words and phrases. — Vanishing cycles, D-modules, symmetric pair, b-function.

Y. LAURENT

In [3], we defined a class of holonomic \mathcal{D} -modules. which we called *tame* \mathcal{D} -modules. These \mathcal{D} -modules have no quotients supported by a hypersurface and their distribution solution are locally integrable. We proved in particular that the Hotta-Kashiwara module is tame, recovering Harish-Chandra theorem. The definition of tame is a condition on the roots of the *b*-functions which are polynomials attached to the \mathcal{D} -module and a stratification of the base space. However, the proof of the fact that the Hotta-Kashiwara module is tame involved some non algebraic vector fields.

The first aim of this paper is to give a completely algebraic version of Harish-Chandra theorem. We give a slightly different definition of tame and an algebraic proof of the fact that the Hotta-Kashiwara module is tame. This proof is different from the proof of [3] and gives more precise results on the roots of the *b*-functions. However our first proof was still valid in the case of symmetric pairs while the present proof uses a morphism of Harish-Chandra which does not exist in that case.

Our second aim is to answer to a remark made by Varadarajan during the Ramis congress. He pointed the fact that an invariant eigendistribution, considered as a distribution on the Lie algebra by the exponential map, is not a solution of the Hotta-Kashiwara module. A key point in the original proof of Harish-Chandra is precisely the proof that after multiplication by a function, the eigendistribution is solution of the Hotta-Kashiwara module (see [23]). The study of the Hotta-Kashiwara module did not bypass this difficult step. Here we consider a family of holonomic \mathcal{D} -module, which we call (H-C)-modules; this family includes the Hotta-Kashiwara modules but also the module satisfied directly by an eigendistribution. We prove that these modules are tame and get a direct proof of Harish-Chandra theorem.

1. V-filtration and b-functions

We first recall the definition and a few properties of the classical V-filtration, then we give a new definition of quasi-homogeneous b-functions and of tame \mathcal{D} -modules. We end this section with a result on the inverse image of \mathcal{D} -modules which will be a key point of the proof in the next section.

1.1. Standard V-filtrations. — In this paper, (X, \mathcal{O}_X) is a smooth algebraic variety defined over k, an algebraically closed field of characteristic 0. The sheaf of differential operators with coefficients in \mathcal{O}_X is denoted by \mathcal{D}_X . Results and proofs are still valid if $k = \mathbb{C}$, X is a complex analytic manifold and \mathcal{D}_X is the sheaf of differential operators with holomorphic coefficients.

Let Y be a smooth subvariety of X and \mathcal{I}_Y the ideal of definition of Y. The V-filtration along Y is given by [10]:

$$V_k \mathcal{D}_X = \{ P \in \mathcal{D}_X |_Y \mid \forall l \in \mathbb{Z}, P \mathcal{I}_Y^l \subset \mathcal{I}_Y^{l+k} \}$$

(with $\mathcal{I}_Y^l = \mathcal{O}_X$ if $l \leq 0$).

This filtration has been widely used in the theory of \mathcal{D} -modules, let us recall some of its properties (for the details, we refer to [19], [12], [18], [14]). The associated graded ring $\operatorname{gr}_V \mathcal{D}_X$ is the direct image by $p : T_Y X \to X$ of the sheaf $\mathcal{D}_{T_Y X}$ of differential operators on the normal bundle $T_Y X$. If \mathcal{M} is a coherent \mathcal{D}_X -module, a $V\mathcal{D}_X$ -filtration on \mathcal{M} is a good filtration if it is locally finite, *i.e.* if, locally, there are sections (u_1, \ldots, u_N) of \mathcal{M} and integers (k_1, \ldots, k_N) such that $V_k \mathcal{M} = \sum V_{k-k_i} \mathcal{D}_X u_i$.

If \mathcal{M} is a coherent \mathcal{D}_X -module provided with a good V-filtration, the associated graded module is a coherent $\operatorname{gr}_V \mathcal{D}_X$ -module and if \mathcal{N} is a coherent submodule of \mathcal{M} the induced filtration is a good filtration (see [19, Chapter III, Proposition 1.4.3] or [18]).

Let θ_Y be the Euler vector field of the fiber bundle T_YX , that is the vector field verifying $\theta_Y(f) = kf$ when f is a function on T_YX homogeneous of degree k in the fibers of p. A *b*-function along Y for a coherent \mathcal{D}_X -module with a good V-filtration is a polynomial b such that

$$\forall k \in \mathbb{Z}, \qquad b(\theta_Y + k) \operatorname{gr}_V^k \mathcal{M} = 0$$

If the good V-filtration is replaced by another, the roots of b are translated by integers. Here, we always fix the filtration, in particular, if the \mathcal{D}_X -module is of the type $\mathcal{D}_X/\mathcal{I}$, the good filtration will be induced by the canonical filtration of \mathcal{D}_X .

1.2. Quasi-homogeneous V-filtrations and quasi-*b*-functions. — Let $\varphi = (\varphi_1, \ldots, \varphi_d)$ be a polynomial map from X to the vector space $W = k^d$ and m_1, \ldots, m_d be strictly positive and relatively prime integers. We define a filtration on \mathcal{O}_X by:

$$V_k^{\varphi} \mathcal{O}_X = \sum_{\langle m, \alpha \rangle = -k} \mathcal{O}_X \varphi^{\alpha}$$

with $\alpha \in \mathbb{N}^d$, $\langle m, \alpha \rangle = \sum m_i \alpha_i$ and $\varphi^{\alpha} = \varphi_1^{\alpha_1} \cdots \varphi_d^{\alpha_d}$. If $k \ge 0$ we set $V_k^{\varphi} \mathcal{O}_X = \mathcal{O}_X$. This filtration extends to \mathcal{D}_X by:

(1)
$$V_k^{\varphi} \mathcal{D}_X = \{ P \in \mathcal{D}_X \mid \forall l \in \mathbb{Z}. PV_l^{\varphi} \mathcal{O}_X \subset V_{l+k}^{\varphi} \mathcal{O}_X \}$$

Definition 1.2.1. A (φ, m) -weighted Euler vector field is a vector field η in $\sum_i \varphi_i \mathcal{V}_X$ such that $\eta(\varphi_i) = m_i \varphi_i$ for $i = 1, \ldots, d$. $(\mathcal{V}_X$ is the sheaf of vector fields on X.)

Lemma 1.2.2. Any (φ, m) -weighted Euler vector field is in $V_0^{\varphi} \mathcal{D}_X$ and if η_1 and η_2 are two (φ, m) -weighted Euler vector fields, $\eta_1 - \eta_2$ is in $V_{-1}^{\varphi} \mathcal{D}_X$.

The map φ may be not defined on X but on an étale covering of X. More precisely, let us consider an étale morphism $\nu : X' \to X$ and a morphism $\varphi : X' \to W = k^d$. If m_1, \ldots, m_d are strictly positive and relatively prime integers, we define $V_k^{\varphi} \mathcal{O}_X$ as the sheaf of functions on X such that $f_0 \nu$ is in $V_k^{\varphi} \mathcal{O}_{X'}$. This defines a V-filtration on \mathcal{O}_X and on \mathcal{D}_X by the formula (1). The map $TX' \to TX \times_X X'$ is an isomorphism and a vector field η on X defines a unique vector field $\nu^*(\eta)$ on X'. By definition, a vector field η on X is a (φ, m) -weighted Euler vector field if $\nu^*(\eta)$ is a (φ, m) -weighted Euler vector field on X'.

Definition 1.2.3. Let u be a section of a coherent \mathcal{D}_X -module \mathcal{M} . A polynomial b is a quasi-b-function of type (φ, m) for u if there exist a (φ, m) -weighted Euler vector field η and a differential operator Q in $V_{-1}^{\varphi}\mathcal{D}_X$ such that $(b(\eta) + Q)u = 0$.

The quasi-*b*-function is said regular if the order of Q as a differential operator is less or equal to the order of the polynomial *b* and monodromic if Q = 0.

The quasi-*b*-function is said *tame* if the roots of *b* are strictly greater than $-\sum m_i$.

These definitions are valid for any map φ but here we always assume that φ is smooth. Then if $Y = \varphi^{-1}(0)$, we say for short that b is a quasi-b-function of total weight $|m| = \sum m_i$ along Y. Remark that lemma 1.2.2 shows that the definition is independent of the (φ, m) -weighted Euler vector field η .

Let \mathcal{M} be a coherent \mathcal{D}_X -module. A $V^{\varphi}\mathcal{D}_X$ -filtration on \mathcal{M} is a good filtration if it is locally finite.

Definition 1.2.4. Let \mathcal{M} be a coherent \mathcal{D}_X -module and $V^{\varphi}\mathcal{M}$ a good $V^{\varphi}\mathcal{D}_X$ filtration. A polynomial b is a quasi-b-function of type (φ, m) for $V^{\varphi}\mathcal{M}$ if, for any $k \in \mathbb{Z}, \ b(\eta + k)V_k^{\varphi}\mathcal{M} \subset V_{k-1}^{\varphi}\mathcal{M}$ where η is a (φ, m) -weighted Euler vector field.
The quasi-b-function is monodromic if $b(\eta + k)V_k^{\varphi}\mathcal{M} = 0$.

Definition 1.2.3 is a special case of definition 1.2.4 if $\mathcal{D}_X u$ is provided with the filtration induced by the canonical filtration of \mathcal{D}_X .

Recall that if \mathcal{M} is a \mathcal{D}_X -module its inverse image by ν is its inverse image as an \mathcal{O}_X -module, that is:

$$\nu^{+}\mathcal{M} = \mathcal{O}_{X'} \otimes_{\nu^{-1}\mathcal{O}_{X}} \nu^{-1}\mathcal{M} = \mathcal{D}_{X' \to X} \otimes_{\nu^{-1}\mathcal{D}_{X}} \nu^{-1}\mathcal{M}$$

where $\mathcal{D}_{X'\to X}$ is the $(\mathcal{D}_{X'}, \nu^{-1}\mathcal{D}_X)$ -bimodule $\mathcal{O}_{X'} \otimes_{\nu^{-1}\mathcal{O}_X} \nu^{-1}\mathcal{D}_X$.

Lemma 1.2.5. — Let $\nu : X' \to X$ be an étale morphism and let φ be a morphism $X' \to W = k^d$. Let \mathcal{M} be a coherent \mathcal{D}_X -module.

The polynomial b is a quasi-b-function of type (φ, m) for a section u of \mathcal{M} if and only if it is a quasi-b-function of type (φ, m) for the section $1 \otimes u$ of $\nu^+ \mathcal{M}$.

Proof. If $\nu : X' \to X$ is étale, the canonical morphism $\mathcal{D}_{X'} \to \mathcal{D}_{X'-X}$ given by $P \mapsto P(1 \otimes 1)$ is an isomorphism and defines an injective morphism $\nu^* : \nu^{-1}\mathcal{D}_X \to \mathcal{D}_{X'}$.

Conversely, the morphism $\tilde{\nu} : \nu_* \mathcal{O}_{X'} \to \mathcal{O}_X$ given by $\tilde{\nu}(f)(x) = \sum_{y \in \nu^{-1}(x)} f(y)$ extends to a morphism $\nu_* \mathcal{D}_{X'} \to \mathcal{D}_X$.

These two morphism are compatible with the V-filtration defined by φ and, by definition, a vector field η on X is a (φ, m) -weighted Euler vector field if and only if $\nu^*(\eta)$ is a (φ, m) -weighted Euler vector field on X'. If $(b(\eta) + R)u = 0$ we