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6-FUNCTIONS AND INTEGRABLE SOLUTIONS OF 
HOLONOMIC D-MODULE 

by 

Y v e s Laurent 

A Jean-Pierre Ramis, à l'occasion de son 60e anniversaire. 

Abstract. — A famous theorem of Harish-Chandra shows that all invariant eigendis-
tributions on a semi-simple Lie group are locally integrable functions. We give here an 
algebraic version of this theorem in terms of polynomials associated with a holonomic 
T>-module. 
Résumé (̂ -fonctions et solutions integrables des modules holonomes). — Un célèbre 
théorème de Harish-Chandra montre que les distributions invariantes propres sur 
un groupe de Lie semi-simple sont des fonctions localement integrables. Nous don­
nons ici une version algébrique de ce théorème en termes de polynômes associés à un 
'D-module holonome. 

Introduction 

Let Gu be a real semisimple Lie group and GR be its Lie algebra. An invari­
ant eigenclistribution T on Gm, is a distribution which is invariant under conjugation 
by elements of GJR and is an eigenvector of every bi-invariant differential operatoi 
on Gu- The main examples of such distributions are the characters of irreducible 
representations of CR. A famous theorem of Harish-Chandra sets that all invariant 
eigendistributions are L1

1

oc-functions on Gu [4]. After transfer to the Lie algebra 
by the exponential map, such a distribution satisfies a system of partial differential 
equations. 

In the language of P-modules, these equations define a holonomic D-module on the 
complexified Lie algebra g. We call this module the Hotta-Kasliiwara module as it 
has been defined and studied first in [6]. In [20], J. Sekiguchi extended these results 
to symmetric pairs. He proved in particular that a condition on the symmetric pair is 
needed to extend Harish-Chandra theorem. In several papers, Levasseur and Stafford 
[15, 16, 17] gave an algebraic proof of the main part of Harish-Chandra theorem. 
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146 Y. LAURENT 

In [3], we defined a class of holonomic P-modules. which we called tame V-modules. 
These D-modules have no quotients supported by a hypersurface and their distribution 
solution are locally integrable. We proved in particular that the Hotta-Kashiwara 
module is tame, recovering Harish-Chandra theorem. The definition of tame is a 
condition on the roots of the 6-functions which are polynomials attached to the V-
module and a stratification of the base space. However, the proof of the fact that the 
Hotta-Kashiwara module is tame involved some non algebraic vector fields. 

The first aim of this paper is to give a completely algebraic version of Harish-
Chandra theorem. We give a slightly different definition of tame and an algebraic 
proof of the fact that the Hotta-Kashiwara module is tame. This proof is different 
from the proof of [3] and gives more precise results on the roots of the 6-functions. 
However our first proof was still valid in the case of symmetric pairs while the present 
proof uses a morphism of Harish-Chandra which does not exist in that case. 

Our second aim is to answer to a remark made by Varadarajan during the Ramis 
congress. He pointed the fact that an invariant eigendistribution, considered as a 
distribution on the Lie algebra by the exponential map, is not a solution of the Hotta-
Kashiwara module. A key point in the original proof of Harish-Chandra is precisely 
the proof that after multiplication by a function, the eigendistribution is solution of the 
Hotta-Kashiwara module (see [23]). The study of the Hotta-Kashiwara module did 
not bypass this difficult step. Here we consider a family of holonomic D-module, which 
we call (H-C)-modules; this family includes the Hotta-Kashiwara modules but also 
the module satisfied directly by an eigendistribution. We prove that these modules 
are tame and get a direct proof of Harish-Chandra theorem. 

1. F-filtration and b-functions 

We first recall the definition and a few properties of the classical ^-filtration, then 
we give a new definition of quasi-homogeneous 6-functioris and of tame P-modules. 
We end this section with a result on the inverse image of D-modules which will be a 
key point of the proof in the next section. 

1.1. Standard ^-nitrations. — In this paper, (X, Ox) is a smooth algebraic va­
riety defined over /c, an algebraically closed field of characteristic 0. The sheaf of 
differential operators with coefficients in Ox is denoted by T>x- Results and proofs 
are still valid if k = C, X is a complex analytic manifold and T>x is the sheaf of 
differential operators with holomorphic coefficients. 

Let Y be a smooth subvariety of X and ly the ideal of definition of Y. The 
^-filtration along Y is given by [10]: 

VkVx = { P G VX\Y I V/ G Z, Pll

Y C TL+K } 

(with Ty = Ox if / ^ 0). 
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This filtration has been widely used in the theory of P-modules, let us recall some 
of its properties (for the details, we refer to [19], [12], [18], [14]). The associated 
graded ring g r r D y is the direct image by /; : TyX —> X of the sheaf T>ryx of 
differential operators on the normal bundle TyX. If Xi is a coherent Dy-module, a 
VVy-filtration on M. is a good filtration if it is locally finite, i.e. if. locally, there are 
sections (ui. • • • • (IN) of A t and integers (A'j kx) such that VIM = Yl Vk-k,Vx'U,• 

If M. is a coherent Py-module provided with a good V -̂filt ration, the associated 
graded module is a coherent grv/D\-module and if TV is a coherent submodule of Xi 
the induced filtration is a good filtration (see [19, Chapter III. Proposition 1.4.3] or 
[18]). 

Let Oy be the Euler vector field of the fiber bundle TyX, that is the vector field 
verifying Oy{f) — kf when / is a function on TyX homogeneous of degree A' in the 
fibers of/;. A l)-fhiiction along Y for a coherent Py-module with a good Infiltration 
is a polynomial /; such that 

VA' G Z. b(0y +k)grkYyM=0 

If the good ^/-filtration is replaced by another, the roots of/; are translated by integers. 
Here, we always fix the filtration, in particular, if the Py-niodule is of the type V\/1. 
the good filtration will be induced by the canonical filtration of/Dy. 

1.2. Quasi-homogeneous V-filtrations and quasi-/>-functions. — Let <p = 
(yi Yd) be a polynomial map from X to the vector space W = kd and / / / 1 m(i 
be strictly positive and relatively prime integers. We define a filtration on G\ by: 

V cpk ON= 
E 

<m.o) = -A-
Ox*" 

with n G N r / . ( / / / . <\) = ^ nam and ^ ° = p\u • • • y / J ' ' . If k > 0 we set VfOx = Ox-
This filtration extends to Vx by: 

(1) \);P\DN= { p G v x l v / G z . p\yoNxCV{%kOx } 

Definition 1.2.1. A {^p. ///)-weighted Euler vector field is a vector field 7/ in ] / / *,V\ 
such that t/ip/) = / / / / V / f°r / = 1 d. (Vy is the sheaf of vector fields on X.) 

Lemma 1.2.2. Any (p>. in)-weighted Eider veetor field is in V{f V\ and if ij\ and / /2 
are two (<p. in)-weighted Euler veetor fields. / / 1 — //•_) is in Vcp-1DN Vx-

The map p may l)e not defined on X but on an etale covering of X. More precisely, 
let us consider an etale morphism v : X' —> X and a mor])hism <p : X' —>• \V = k'1. If 
/ / / 1 m(i are strictly positive1 and relatively prime integers, we define Vj^Ox as the 
sheaf of functions on A" such that fQv is in V^O\>. This defines a V-filtration on Ox 
and on V\ by the formula (1). The map TX' —> TX x y X' is an isomorphism and a 
vector field 7/ on X defines a unique1 vector field v*{ij) on X'. By definition, a vector 
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field // on A is a(cp, rn)-weighted Euler vector held if /^*(//) is a (< .̂ m)-weighted Euler 
vector held on X'. 

Definition 1.2.3. Let u be a section of a coherent DN--module Xi. A polynomial b 
is a quasi-6-function of type {if, m) for u if there exist a( cp,m)-weighted Euler vector 
field // and a differential operator Q in \XxV>x such that (b(rj) + Q)u — 0. 

The quasi-6-function is said regular if the order of Q as a differential operator is 
less or equal to the order of the polynomial /; and nionodromic if Q = 0. 

The quasi-fr-function is said tame if the roots of b are strictly greater than — ]T m7. 

These definitions are valid for any map ^ l)ut here we always assume that y> is 
smooth. Then if Y = ip~l(0). we say for short that /; is a quasi-6-function of total 
weight |m| = X / m ' along Y. Remark that lemma 1.2.2 shows that the definition is 
independent of the ( / / ; )-weighted Euler vector field //. 

Let Xi be a coherent V\-module. A V*U\ -filtration on Xi is a good filtration if 
it is locally finite. 

Definition 1.2.4. Let Xi be a coherent Pa-module and VcpM a good VcpVX-
filtration. A polynomial b is a quasi-/;-function of type (y>. in) for V cp Mi if, for any 
k e Z. b(n + k)Vcp£M C Vcpk_XM where // is a (y. m)-weighted Euler vector field. 

The quasi-6-function is nionodromie if b(tj + k)Vcp k^M — 0. 

Definition 1.2.3 is a special case of definition 1.2.4 if DNu is provided with the 
filtration induced by the canonical filtration of T>X-

Recall that if Xi is a V\-module its inverse image by v is its invcT'se image as an 
O\-module, that is: 

iAXi = Ox> ®„-*ox V-1 M= DX'' = - V x ' ^ X 0 , - . P v v~{M 

where Vx'^x i s the (T>X',v lT>\)-bimodule Ox' t> 1 ox

 v YT) x • 

Lemma 1.2.5. Let v : X' —> X be an etale morphism and let <p be a morphism 
X' -> W = kd. Let Xi be a coherent DN--module. 

The polynomial b is a quasi-b-function of type (^p.m) for a section u of Xi if and, 
only if it is a quasi-b-function of type (9. m) for the section 1 <g> u of iA JV[. 

Proof. If v : X' —> A" is etale. the canonical morphism T>X' —> T*x'^x given by 
P 1 * P(l 69 1) is an isomorphism and defines an injeetive morphism 1/* : v~lVx —+ 
DN 

Conversely, the morphism v : v*0X' —> Ox given by u(f){x) =^2 ! JEIY-I(X)^ f(y) 
extends to a morphism v*Vx' —> T>x-

These two morphism are compatible with the I -filtration defined by <p and. by 
definition, a vector field 7/ on A is a [<p. ?7/)-weighted Euler vector field if and only 
if /^*(//) is a (9.7/?)-weighted Euler vector field on X'. If (b(ij) + B)a = 0 we 
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