Astérisque

ALCIDES LINS NETO Curvature of pencils of foliations

Astérisque, tome 296 (2004), p. 167-190 <http://www.numdam.org/item?id=AST 2004 296 167 0>

© Société mathématique de France, 2004, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

CURVATURE OF PENCILS OF FOLIATIONS

by

Alcides Lins Neto

Dedicated to J.-P. Ramis in his 60th birthday

Abstract. — Let \mathcal{F} and \mathcal{G} be two distinct singular holomorphic foliations on a compact complex surface M, in the same class, that is $N_{\mathcal{F}} = N_{\mathcal{G}}$. In this case, we can define the pencil $\mathcal{P} = \mathcal{P}(\mathcal{F}, \mathcal{G})$ of foliations generated by \mathcal{F} and \mathcal{G} . We can associate to a pencil \mathcal{P} a meromorphic 2-form $\Theta = \Theta(\mathcal{P})$, the form of curvature of the pencil, which is in fact the Chern curvature (cf. [Ch]). When $\Theta(\mathcal{P}) \equiv 0$ we will say that the pencil is flat. In this paper we give some sufficient conditions for a pencil to be flat. (Theorem 2). We will see also how the flatness reflects in the pseudo-group of holonomy of the foliations of \mathcal{P} . In particular, we will study the set { $\mathcal{H} \in \mathcal{P} \mid \mathcal{H}$ has a first integral} in some cases (Theorem 1).

Résumé (Courbure de pinceaux de feuilletages). — Nous nous intéressons au *pinceau* de feuilletages $\mathcal{P} = \mathcal{P}(\mathcal{F}, \mathcal{G})$ engendré par deux feuilletages \mathcal{F} et \mathcal{G} holomorphes singuliers distincts sur une surface complexe compacte M et appartenant à la même classe, *i.e.*, $N_{\mathcal{F}} = N_{\mathcal{G}}$. La forme de courbure du pinceau \mathcal{P} est une 2-forme $\Theta = \Theta(\mathcal{P})$ qui coïncide avec la courbure de Chern (cf. [Ch]); lorsque $\Theta(\mathcal{P}) \equiv 0$ on dit que le pinceau est plat. Dans cet article, nous donnons des conditions suffisantes de platitude d'un pinceau (Théorème 2). Nous regardons comment se traduit la platitude dans le pseudo-groupe d'holonomie des feuilletages de \mathcal{P} et, en particulier, nous étudions dans certains cas l'ensemble { $\mathcal{H} \in \mathcal{P} \mid \mathcal{H}$ admet une intégrale première} (Théorème 1).

1. Introduction

Let \mathcal{F} and \mathcal{G} be two distinct singular holomorphic foliations on a compact complex surface M, with isolated singularities, in the same class, that is $N_{\mathcal{F}} = N_{\mathcal{G}}$. This means that there exists a Leray covering $(U_{\alpha})_{\alpha \in A}$ of M by open sets, and collections $(\omega_{\alpha})_{\alpha \in A}$, $(\eta_{\alpha})_{\alpha \in A}$ and $(g_{\alpha\beta})_{U_{\alpha\beta} \neq \emptyset}$, $U_{\alpha\beta} = U_{\alpha} \cap U_{\beta}$, such that

²⁰⁰⁰ *Mathematics Subject Classification.* — Primary 37F75; Secondary 32S65. *Key words and phrases.* — Holomorphic foliations, curvature, flat pencils.

This research was partially supported by Pronex.

(I) ω_{α} and η_{α} are holomorphic 1-forms on U_{α} which represent the foliations \mathcal{F} and \mathcal{G} , respectively. This means that $\mathcal{F}|_{U_{\alpha}}$ and $\mathcal{G}|_{U_{\alpha}}$ are defined by the differential equations $\omega_{\alpha} = 0$ and $\eta_{\alpha} = 0$, respectively. Since the singularities of \mathcal{F} and \mathcal{G} are isolated, we have $\operatorname{cod}_{\mathbb{C}}(\omega_{\alpha} = 0) \ge 2$ and $\operatorname{cod}_{\mathbb{C}}(\eta_{\alpha} = 0) \ge 2$ for every $\alpha \in A$.

(II) If $U_{\alpha\beta} \neq \emptyset$ then $g_{\alpha\beta} \in \mathcal{O}^*(U_{\alpha\beta})$. $\omega_{\alpha} = g_{\alpha\beta} \cdot \omega_{\beta}$ and $\eta_{\alpha} = g_{\alpha\beta} \cdot \eta_{\beta}$ on $U_{\alpha\beta}$.

The class of the multiplicative cocycle $(g_{\alpha\beta})_{U_{\alpha\beta}\neq\emptyset}$ in $\operatorname{Pic}(M)$ defines $N_{\mathcal{F}}$ and $N_{\mathcal{G}}$, so that $N_{\mathcal{F}} = N_{\mathcal{G}}$. The *pencil generated by* \mathcal{F} and \mathcal{G} is the family $\mathcal{P} = (\mathcal{F}_T)_{T\in\overline{\mathbb{C}}}$, where

(III) $\mathcal{F}_{\infty} = \mathcal{G}$ and if $T \in \mathbb{C}$, then \mathcal{F}_T is represented on U_{α} by the form $\omega_{\alpha}^T := \omega_{\alpha} + T \cdot \eta_{\alpha}$.

The singular set of \mathcal{F}_T is defined by $\operatorname{sing}(\mathcal{F}_T) \cap U_\alpha = \{\omega_\alpha^T = 0\}$. The tangency divisor of \mathcal{F} and \mathcal{G} is defined by $\operatorname{Tang}(\mathcal{F}, \mathcal{G}) \cap U_\alpha = \{\omega_\alpha \wedge \eta_\alpha = 0\}$. Note that $\operatorname{sing}(\mathcal{F}_T)$ and $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$ are analytic subsets of M and that $\operatorname{sing}(\mathcal{F}_T) \subset |\operatorname{Tang}(\mathcal{F}, \mathcal{G})|$ for all $T \in \overline{\mathbb{C}}$. Since $\mathcal{F} \neq \mathcal{G}$, $|\operatorname{Tang}(\mathcal{F}, \mathcal{G})|$ is a proper analytic subset of pure dimension one. Let $W = M \setminus |\operatorname{Tang}(\mathcal{F}, \mathcal{G})|$ and $W_\alpha = W \cap U_\alpha$. Since $\omega_\alpha \wedge \eta_\alpha(p) \neq 0$ for all $p \in W_\alpha$, there exists an unique holomorphic 1-form θ_α on W_α such that

(*)
$$d\omega_{\alpha} = \theta_{\alpha} \wedge \omega_{\alpha} \text{ and } d\eta_{\alpha} = \theta_{\alpha} \wedge \eta_{\alpha}$$

for all $\alpha \in A$. It follows from (*), (II) and $\omega_{\alpha} \wedge \eta_{\alpha} \neq 0$ that, if $W_{\alpha\beta} := W_{\alpha} \cap W_{\beta} \neq \emptyset$ then, $\theta_{\alpha} = \theta_{\beta} + dg_{\alpha\beta}/g_{\alpha\beta}$ on $W_{\alpha\beta}$. Hence $d\theta_{\alpha} = d\theta_{\beta}$ on $W_{\alpha\beta}$ and we can define a holomorphic 2-form Θ on W by

$$(**) \qquad \qquad \Theta|_{U_{\alpha}} := d\theta_{\alpha}$$

It can be proved that the form Θ can be extended meromorphically to Tang(\mathcal{F}, \mathcal{G}) (see §2). This extension will be called the *curvature of the pencil* $\mathcal{P}(\mathcal{F}, \mathcal{G})$. We will say that the pencil is *flat* if $\Theta = 0$. Let us see some examples of flat pencils.

Example 1. — Let ω and η be two meromorphic closed 1-forms on some compact complex surface M, such that $\omega \wedge \eta \not\equiv 0$ and the divisors of poles and zeroes of ω and η coincide. Let \mathcal{F} and \mathcal{G} be the foliations generated by ω and η , respectively. It is known that $N_{\mathcal{F}} = N_{\mathcal{G}}$ in this case (*cf.* [**Br**]). Moreover, the pencil generated by \mathcal{F} and \mathcal{G} , say $\mathcal{P}(\mathcal{F}, \mathcal{G})$, is defined by the pencil of forms $\omega_T = \eta + T \cdot \omega$. Therefore, it is flat. We will call a pencil like this *a pencil of closed forms*.

A particular case is given by some families of logarithmic forms in $\mathbb{C}P(2)$. Let $f_1, \ldots, f_k, k \ge 3$, be irreducible homogeneous polynomials of three variables such that $df_i \wedge df_j \ne 0$ if $i \ne j$. Given $\lambda = (\lambda_1, \ldots, \lambda_k) \in \mathbb{C}^k$, such that $\sum_{j=1}^k \lambda_j \cdot dg(f_j) = 0$, set $\omega_{\lambda} = \sum_{j=1}^k \lambda_j \cdot df_j/f_j$. The closed form ω_{λ} can be considered as meromorphic form on $\mathbb{C}P(2)$, so that the family $(\omega_{\lambda})_{\lambda}$ generates a family of foliations $(\mathcal{F}_{\lambda})_{\lambda}$ on $\mathbb{C}P(2)$. It can be checked that any pencil contained in this family is flat.

Another particular case, is the following: let M be the complex two torus \mathbb{C}^2/Γ , where $\Gamma = \mathbb{Z} \cdot v_1 \oplus \mathbb{Z} \cdot v_2 \oplus \mathbb{Z} \cdot v_3 \oplus \mathbb{Z} \cdot v_4$ is some lattice in \mathbb{C}^2 , and $\pi \colon \mathbb{C}^2 \to \mathbb{C}^2/\Gamma$ be the canonical projection. Consider an affine coordinate system (z, w) on \mathbb{C}^2 and let \mathcal{F} and \mathcal{G} be the foliations generated by the closed forms ω and η such that $\pi^*(\omega) = dz$ and $\pi^*(\eta) = dw$, respectively.

Example 2. — The pull-back of a flat pencil is a flat pencil. More precisely, let M and N be complex surfaces and $f: M \to N$ be a meromorphic map. If $\mathcal{P} := \mathcal{P}(\mathcal{F}, \mathcal{G})$ is a pencil of foliations on N, then we can define the pencil $f^*(\mathcal{P}) = \mathcal{P}(f^*(\mathcal{F}), f^*(\mathcal{G}))$ on M. It is not difficult to prove that, if \mathcal{P} is flat then $f^*(\mathcal{P})$ is also flat.

Example 3. Suppose that the pencil $\mathcal{P}(\mathcal{F}, \mathcal{G})$ is defined by $\omega + T \cdot \eta$, where ω and η are meromorphic 1-forms, and there exists a closed meromorphic 1-form θ such that $d\omega = \theta \wedge \omega$ and $d\eta = \theta \wedge \eta$. Then the pencil $\mathcal{P}(\mathcal{F}, \mathcal{G})$ is flat. Of course, the pencils of Example 1 are of this kind, because the forms ω and η are closed. However, the reader can find some examples in [**LN**] or [**LN-1**] which are not generated by closed forms. One example of this kind is the pencil \mathcal{P}_1 of foliations of degree two on $\mathbb{C}P(2)$ defined in some affine coordinate system $(x, y) \in \mathbb{C}^2 \subset \mathbb{C}P(2)$ by the the forms (see §2.4 of [**LN**]):

(1)
$$\begin{cases} \omega_1 = (4x - 9x^2 + y^2)dy - 6y(1 - 2x)dx \\ \eta_1 = 2y(1 - 2x)dy - 3(x^2 - y^2)dx. \end{cases}$$

A straightforward computation gives $d\omega_1 = \frac{5}{6} \frac{dP}{P} \wedge \omega_1$ and $d\eta_1 = \frac{5}{6} \frac{dP}{P} \wedge \eta_1$, where $P(x, y) = -4y^2 + 4x^3 + 12xy^2 - 9x^4 - 6x^2y^2 - y^4$. The other examples of [**LN**] can be obtained from the above one by pulling-back \mathcal{P}_1 by a meromorphic map $f : \mathbb{C}P(2) \to \mathbb{C}P(2)$.

Another example is the pencil \mathcal{P}_2 of degree three generated by

(2)
$$\begin{cases} \omega_2 = y(x^2 - y^2)dy - 2x(y^2 - 1)dx \\ \eta_2 = (4x - x^3 - x^2y - 3xy^2 + y^3)dy + 2(x + y)(y^2 - 1)dx. \end{cases}$$

In this case, we have $d\omega_2 = \frac{3}{4} \frac{dQ}{Q} \wedge \omega_2$ and $d\eta_2 = \frac{3}{4} \frac{dQ}{Q} \wedge \eta_2$, where $Q(x, y) = (y^2 - 1)(x^2 + y^2 - 2x)(x^2 + y^2 + 2x)$.

We would like to observe that both pencils \mathcal{P}_1 and \mathcal{P}_2 are exceptional families of foliations in the sense of [**LN-1**]. This means the folowing: Let \mathcal{F}_T^j , $T \in \overline{\mathbb{C}}$, be the foliation defined in $\mathbb{C}^2 \subset \mathbb{C}P(2)$ by the form $\omega_j + T \cdot \eta_j$ (\mathcal{F}_{∞}^j defined by η_j), where ω_j and η_j are as in (j), j = 1, 2, of example 3. Then, for j = 1, 2, we have:

(a) The singularities of \mathcal{F}_T^j are of constant analytic type. In other words, there is a finite subset $F_j \subset \overline{\mathbb{C}}$ such that if $T_1, T_2 \in \overline{\mathbb{C}} \setminus F_j$ then every singularity of $\mathcal{F}_{T_1}^j$ is locally analytically equivalent to some singularity of $\mathcal{F}_{T_2}^j$.

(b) If we set

 $E_j = \{T \in \overline{\mathbb{C}} \mid \mathcal{F}_T^j \text{ has a meromorphic first integral}\},\$

then E_j is countable and dense in $\overline{\mathbb{C}}$.

(c) Given $T \in E_j$ denote by $d_j(T)$ the degree of the generic level of the first integral of \mathcal{F}_T^j . Then, for any $m \in \mathbb{N}$ the set $\{T \in E_j \mid d_j(T) \leq m\}$ is finite. In particular, in both families, there are foliations with first integrals of arbitrarily large degrees.

Concerning the exceptional pencils above, we have the following result:

Theorem 1. — Let E_j , j = 1, 2, be as in (b). Then

$$\begin{cases} E_1 = \mathbb{Q} \cdot \langle 1, e^{2\pi i/3} \rangle \cup \{\infty\} \\ E_2 = \mathbb{Q} \cdot \langle 1, i \rangle \cup \{\infty\}. \end{cases}$$

where $\mathbb{Q} \cdot \langle a, b \rangle = \{q_1 \cdot a + q_2 \cdot b \mid q_1, q_2 \in \mathbb{Q}\}.$

In our last result we will give some sufficient condictions for the flatness of a pencil $\mathcal{P} = \mathcal{P}(\mathcal{F}, \mathcal{G})$ in terms of the singularities of the foliations in \mathcal{P} and the components of the divisor of tangencies. In order to state it, let us consider the singularities of \mathcal{F}_T , $T \in \overline{\mathbb{C}}$. Without lost of generality, we will suppose that \mathcal{F} and \mathcal{G} have isolated singularities. This implies that the set $NI := \{T \in \overline{\mathbb{C}} \mid \mathcal{F}_T \text{ has non-isolated singularities}\}$ is finite. Set $IS := \overline{\mathbb{C}} \setminus NI$ and for each $T \in IS$, set $n(T) := \#(\operatorname{sing}(\mathcal{F}_T))$. Note that, if $T \in IS$ then $N_{\mathcal{F}_T} = N_{\mathcal{F}}$. It is well known that the number of singularities of \mathcal{F}_T , counted with multiplicities, is given by $(cf. [\mathbf{Br}])$:

$$m(\mathcal{F}) = m(\mathcal{F}_T) = N_{\mathcal{F}}^2 + N_{\mathcal{F}}.K_M + c_2(M)$$

where K_M is the canonical bundle of M. Hence $n(T) \leq m(\mathcal{F})$ for all $T \in IS$. Let $n_0 = \max\{n(T) \mid T \in IS\}$ and $GP = \{T \in IS \mid n(T) = n_0\}$. We need a fact.

Lemma 1. $-\overline{\mathbb{C}} \setminus GP$ is finite. Moreover, there exist holomorphic maps $p_j \colon GP \to M$, $j = 1, \ldots, n_0$, such that $\operatorname{sing}(\mathcal{F}_T) = \{p_1(T), \ldots, p_{n_0}(T)\}$ for all $T \in GP$.

The proof of Lemma 1 is left for the reader.

Definition 1. - We say that the singularity p_j is fixed if the map $p_j: GP \to M$ is constant. Otherwise, we say that p_j is movable. For instance, if p is a singularity of the curve $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$ then p is a singularity of all foliations of the pencil and it is a fixed singularity of the pencil.

Note that, for any movable singularity p_j of the pencil, the image $p_j(GP)$ is contained in some irreducible component C of $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$. In this case we will say that p_j is contained in C.

Let $C \subset \operatorname{Tang}(\mathcal{F}, \mathcal{G})$ be an irreducible component. We have two possibilities:

(A) C is invariant for both foliations \mathcal{F} and \mathcal{G} . In this case, C is invariant for all foliations \mathcal{F}_T in the pencil and we will say that C is *invariant for the pencil*.

(B) C is not invariant for the pencil. In this case, the set $IN(C) = \{T \in \overline{\mathbb{C}} \mid C \text{ is invariant for } \mathcal{F}_T\}$ is finite.