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MONODROMY PRESERVING DEFORMATION A N D 
DIFFERENTIAL GALOIS GROUP I 

by 

Hiroshi U m e m u r a 

For J.-P. Rarnis on the occasion of his 60th birthday 

Abstract. — In 1914, J. Drach interpreted in terms of his infinite dimensional differ
ential Galois theory R. Fnchs' work on the monodromy preserving deformation and 
the sixth Painleve equation. This note of Drach contains a quite original idea but it 
is difficult to understand. We analyze his note by our infinite dimensional differen
tial Galois theory. We get non-trivial examples of which we can calculate our Galois 
group. 

Résumé (Déformation isomonodromique et groupe de Galois différentiel). — En 1914. 
J. Drach interpréta le travail de R. Fuchs sur les déformations isomonodromiques et la 
sixième équation de Painlevé en termes de sa théorie de Galois de dimension infinie. 
La note de Drach contient une idée très originale mais difficile à comprendre. Nous 
analysons sa note en appliquant notre théorie de Galois différentielle de dimension 
infinie. Cela nous donne des exemples non triviaux dont nous pouvons calculer notre 
groupe de Galois. 

1. In t roduct ion 

Today, there are a variety of ways of defining the Painleve equations. Most of them 

are unimaginable from the original definition. 

(1) Historically the origin of the Painleve equations goes back to the pursuit of spe

cial functions defined by algebraic differential equations of the second order. Around 

1900 Painleve succeeded in classifying algebraic differential equations y" — F(t. //. y') 

without movable singular points, where F is a rational function of t, y and y' and t is 

the independent variable so that y' = dy/dt and y" = d2y/d,t2. The property of being 

free from the movable singularities is nowadays called the Painleve property. After 

he classified the equations satisfying the condition, Painleve then threw away those 
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equations tha t he could integrate by the so far known functions and thus he arrived 

at the list of the six Painleve equations. This is the first definition of the Painleve 

equations. It is, however, very lucky that he could discover the Painleve equations in 

this manner. 

(2) In 1907, R. Fuchs discovered tha t the sixth Painleve equation describes a mon-

odromy preserving deformation of a second order ordinary linear equation y" = p(x)y. 

Later R. Gamier generalized this for the other Painleve equations. 

(3) In our former work [5], we showed that we can recover the second Painleve 

equation form a rational surface with a rational double point. We can regard this as 

an algebro-geometric definition of the second Painleve equation. 

(4) Masatoshi Noiimi and Yasuhiko Yamada interpreted theory of Painleve equa

tions form the view point of Kac-Moody Lie algebra. They not only uniformly re

viewed the theory of r function of the Painleve equations but also generalized the 

Painleve equations in a natural frame work. 

(5) There is another definition due to J. Drach [1] in 1914. He asserts the equiva

lence of the following two conditions for a function X(t). 

(i) A(£) satisfies the sixth Painleve equation. 

(ii) The dimension of the Galois group of a non-linear differential equation 

dy 

dt 
= 

y(y-1)(t-x) 

t(t-l)(y-X) 

is finite. 

In the second condition, the Galois group of general algebraic differential equation is 

involved. Namely the second condition depends on his infinite dimensional differential 

Galois theory, which has been an object of discussion since he proposed it in his thesis 

in 1898. 

In this note, we apply our infinite dimensional Galois theory of differential equations 

[7] to study the result of J. Drach. We prove tha t the first condition (i) implies the 

second (ii). 

Theorem 1.1. — Let X(t) be a function oft satisfying the sixth Painleve equation. Let 

K = C(£, A(£), Xf (t)) which is a differential field with derivation d/dt. Let L = K(y) 

be a differential field extension of K such that y is transcendental over K and such 

that y satisfies 

dy 

dt 
= 

y(y-l)(t-X) 

t(t-l)(y-X)' 

Then the Galois group InfGal(L/ / f ) is at most of dimension 3. 

Remark 1.2. — We can expect that generically the dimension of InfGal(L/i\") is 3. 

Yet inequality dim InfGal (L/K) < 3 may occur. So it is important to determine the 

solutions A of the sixth Painleve equation and the corresponding In fGal (L /X) such 

tha t dim InfGal (L/X) < 3. 
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For the first Painleve equation, we can prove a more precise result. However, this 
still relies on a statement about constant fields, called Proposition 5.3 below, which 
will be proven in [8]. 

Theorem 1.3 (assuming Proposition 5.3 in §5). - Let X(t) be a function oft satisfying 
the first Painleve equation X" = OA2 + t. Let K = C{t.\(t),W'(t)) which is a differ
ential field with derivation d/dt. Let L = K(y) be a differential field extension of K 
such that y is transcendental over K and, such that y satisfies q 

dy 
dt = 

1 
2 

1 

y - Mt) 

Then the Galois group 

InfGal (L/A) ~ S L 2 / , t . 

Remarks 1.4. As the proof of the Theorems shows, it is difficult to imagine how to 
deduce the condition (i) from (ii). 

The assertion of Drach should be properly understood otherwise we would have 
counter examples. In fact, the second condition (ii) is closed under the specialization 
of the function X(t). whereas the first (i) is not so. Hence the first condition (i) should 
be replaced by 

(i)* The function X(t) satisfies the sixth Painleve equation P\ j or a degeneration 
of Pvi-

Why are the Theorems interesting? Because the Galois group, which is a formal 
group of infinite dimension in general, is very difficult to calculate. We have only two 
types of examples where we can calculate the Galois group. (1) If L/K is a strongly 
normal extension in the sense of Kolchin which is his generalization of classical Galois 
extension so that the Galois group G := Gal(L/A") of the extension is an algebraic 
group, then InfGal(L / /v) = G and (2) for differential field extension L = K(y)/K 
such that y is a solution of a Riccati equation with coefficients in K. InfGal(A/A') is 
a formal subgroup of SL9 (cf. Theorem (5.10), [7]). 

Since we can prove only one direction of the assertion of Drach. our result is not-
satisfactory in the sense that it does not give us a new definition of the Painleve equa
tion. It offers us. however, highly non-trivial examples of differential field extensions 
of which we can calculate our Galois group. 

The author would like to acknowledge his indebtedness to Daniel Bertrand. With
out his constant interest in the subject and valuable discussions with him. this work 
would not have been done. It is a pleasure to thank B. Malgrange who kindly per
mitted us to add his letter to D. Bertrand as an appendix to this note. 
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2. Review of R. Fuchs' paper 

R. Fuchs studied a monodromy preserving deformation of a linear differential equa
tion d2y/dx2 — p(x)y. Namely he considered a system of linear equations 

( i ) 

I 

0'2y, 
Ox2 

= pyi, 

dyi 
9t 

= Byt - A dyi 
dx 1 

for / = 1, 2. 

where 

V = a 
R 2 + 

b 
(x-l)2 + c 

(x - tV 
= e 

(x - A) 2 + • • • 

and we assume tha t A is not a function of x but it is a function of t, i.e., dX/Ox — 0. y\ 
and ij2 are linearly independent solutions. The hitegrability of the system (1) implies 

A(x. t) = x(x — l)(t — A) 
t(t-l)(x-X) 

and B(x. t) 1 
2 

dA 
dx 

and A(t) satisfies the sixth Painleve equation Pyj. 
Where does the non-linear differential equation 

dy 
(It = 

?/(// - !)(-// - A) 
t(t-l)(t-Y) 

in Theorem 1.1 come from? 

Lemma 2.1. - We may assume that the Wronskian 

Wr = 
( 
( 
( 

df V-2 

dyi/dx 0y2/0x 

) 
) 
) 

= 1. 

Proof. — It is an exercise to check dWr/dt — DWr/0x = 0 so tha t Wr is a constant. 
It is sufficient to replace yt by (1 / \jWr)yt for / = 1.2. • 

From now on we write T for t, W for x so that we consider the System 

:2) 

! 

d2y, 
nu • = PU • 

dm 
dT 

= D(W. T)y, - A(W.T) 
qui 
dW 

for •/ = 1, 2, 

Lemma 2.2. If we set y = y-i/vi, then we have 

I 

(hi 
ow 

= 
l 

qi2 

dy 
or 

= - A 
1 

s2fe 

Proof. This is a consequence of Lemma 2.1. 
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