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G A L O I S R E P R E S E N T A T I O N S , D I F F E R E N T I A L E Q U A T I O N S , 

A N D q -DIFFERENCE E Q U A T I O N S : 

S K E T C H OF A p-ADIC U N I F I C A T I O N 

by 

Yves André 

Abstract. — This is a broad introduction to the following, more technical, paper 
[AdV]. We explain how [AdV] relates to two major themes of J.-P. Ramis' work, 
which eventually become unified in the p-adic world. 

Résumé (Représentations galoisiennes, équations différentielles et aux ç-différences: esquisse 
d'une unification p-adique) 

Ce texte est une introduction développée à l'article suivant, plus technique [AdV]. 
Nous expliquons comment [AdV] est lié à deux thèmes majeurs de l'œuvre de 
J.-P. Ramis, et comment ceux-ci trouvent leur unification en passant au monde p-
adique. 

Introduction 

Two remarkable analogies haved played an important role in Jean-Pierre Ramis?  

work: 

the analogy between linear complex differential equations and coverings in char
acteristic ρ (reported in D. Bertrand's contribution to this volume), 

the analogy between linear differential equations and -̂difference equations (re
ported in J. Sauloy's contribution). 

Our aim is to explain the analogs of these analogies in the p-adic world. We will see 
that once transposed into that context, these analogies become much more precise, 
and eventually lead to some equivalences of categories! 

2000 Mathematics Subject Classification. — Primary 12H25; Secondary 34A30, 11S80, 14H30, 39A13, 
11S15. 
Key words and phrases. — Differential equations, g-difference equations, coverings, wild singularities, 
local Galois representation, overconvergence, p-adic local monodromy. 
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44 Y. ANDRÉ 

1. A mysterious analogy: linear complex differential equations and 
coverings in characteristic p, tame and wild 

1.1. A dictionary. — This analogy grew out of discussions between J.-P. Ramis 
and M. Raynaud during the "Nuit de la Musique 1993v^\ Let us recall it in the form 
of a "dictionary": 

Differential side 

X — X \ S affine curve / C 
(X complete) 
differential module / X 
singular point (in S) 
regular singular point 

irregular singular point 
local differential Galois 
group at s G S 
(global) differential Galois group G 
(a linear alg. group / C) 
torus in G 
L(G)\ normal subgroup 
generated by all tori 
monodromy map 
μ : m(X) -> G/L(G) 
μ has Zariski-dense image 
(Ramis condition for the existence 
of a cliff, module on X with cliff. 
Galois group G, all singularities s G S 
being regular but one) 

Characteristic-/; side 

X = X \ S affine curve / k C Fp 

(X complete) 
unramified Galois covering of X 
branch point (in S) 
tame branch point, i.e., 
the ramification index at s is 
prime to ρ 
wild branch point 
inertia group at s G S 

covering group G 
(a finite group) 
p-Sylow subgroup of G 
p(G): normal subgroup 
generated by all p-Sylow's 
monodromy map 
μ:π["'\Χ)^α/ρ(0) 
μ is surjective 
(Harbater condition for the existence 
of an unramified G-covering of X, 
all branch points s G S 
being tame but one). 

Comment. — In the right-hand column, F p denotes a fixed algebraic closure of the 
field F p with p-elements, and π\ (X) denotes the profinite group which classifies 
unramified coverings of X of degree prime to p. i.e., the prime-to-p quotient of 
Grothendieck's algebraic fundamental group πι (X) of X. According to Grothendieck, 

(1) Older sources, in the ̂ -adic context, will be evoked in the next section. 
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π[ρ (Χ) is a free prime-to-p profinite group on 2g-\- \S\ — 1 generators (g denotes the 
genus of X and S is assumed to be non-empty) (2) 

1.2. i-adic linearized variant (f φ ρ). — There is a somewhat older and more 
standard version of this dictionary (cf. e.g. the end of [K]) in which objects in the 
right-hand column are replaced by more linear ones (in fact Z^-linear^3^ ones, for 
some fixed (but arbitrary) prime number £ φ ρ). It consists essentially in considering 
at once the whole tower of unramified coverings of X of degree a power of L In that 
way, finite groups are replaced, in the right-hand column, by /-adic Lie groups, or 
even by algebraic groups over Q(> (by taking a suitable algebraic envelope). 

Differential side 

X = X \ S affine curve / C 
(X complete) 

differential module M on X 

differential Galois group 
(an algebraic group / C) 

local differential Galois group 

de Rham cohomology groups 

χ(Λ/) = £(-1)'«Uni H:m(X.M) 

Deligne-Malgrange irregularity 
irr(A/, s) at s 

Deligne's formula for χ(Μ) 
in terms of rk Λ/ and 
irregularities 

C har act er ist ic-p side 

X = X \ S affine curve / k C Fp 

(X complete) 

lisse £-adic sheaf C on X 
(£-adic continuous representation 
ofTTipO) 

monodromy group (image of 
πι (X) or its Zariski closure, 
an algebraic group / Q/) 

image of inertia group X 
(or its Zariski closure) 

étale cohomology groups 
H'vt(X,C) 

Swan conductor sw(A/, «s) at s G S 

Grothendieck's formula for x(C) 
hi terms of rk M and Swan 
conductors. 

Referee's remark. Earlier presentations of the Ramis-Raynaud dictionary can be found in M. van 
der Put's Bourbaki talk: Recent work on differential Galois theory (Exposé 849, Astérisque 252 
(1998), 341-367), as well as in van der Put and Singer's book Galois Theory of Linear Differential 
Equations, Springer-Verlag (2003). 
(3)Recall that the ring of -̂adic integers Z<< is the limit of the system ·•· —> Z/f" + 1Z —> 
Z/f"Z •••'L/Œ = Ff, so that any -̂adic integer can be expressed as a series an^n where 
a-,, e {0, 1, .. . J. — 1}. The field of fractions of Zl is Ql = In the sequel, we denote by Q(. a 
fixed algebraic closure of Qf. 

x(C) = ^{-l)idimHit(X,C) 

HidR (X, M) 
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1.3. The ^-adic local monodromy theorem (£ / ρ). — Let us recall the struc
ture of the absolute Galois groups which play a role in the "characteristic-̂  side". We 
now assume that k = Fpn c k = F p is the field with pn elements. Then, 

Gk := Gal(fc/fc) =Z = Y[Ze> and 
r 

Gk((x)) ;— Gal (A:((:r))sep/A;((:r;))) can be unscrewed via two exact sequences: 

1 — y X —y Gk((x)) —> Gk —> 1 
and 

1 —> V —> X —>Zex Yl Zf> —> 1 
''//;.' 

where X = Gj,^a.^ is the inertia group, and V is a pro-p-group called the wild inertia 
group. 

This reflects the fact that in contrast to the char. 0 case, the algebraic closure of 
k((x)) contains many more elements than just Puiseux series. For instance, roots ζ of 
the Artin-Schreier equation z~p — z~l = x~l cannot be expressed as Puiseux series. 

Correspondingly, one has a tower of Galois extensions 

A;((.r)) C k((x)) Τ U H(*l/")) ^ (H(*WP, 

with respective Galois groups Gk,X/V and V. 

Theorem 1.1 (Grothendieck [G]). Every ί-adie representation of Gk((x)) is quasi-
imipoterit, i.e., a suitable open subgroup) of X acts (through its quotient in Έρ) by 
unvpotent matrices. 

This can also be formulated, in the •Tannakian vein"*, as an equivalence of <S>-
categories 

B.epq (X x GA) {continuous Q -̂reps. of X which extend to reps, of GF} 
where X appears in the left-hand side as a constant group-scheme (and representations 
are understood in the scheme-theoretic sense), and in the right-hand side as a profinite 
topological group. 

2. The j>adic analog of this analogy. An equivalence of categories. 

2.1. Some motivation. Frobenius and over convergence.— At least two as
pects of the above dictionary 1.2 are unsatisfactory: the arbitraryness of the auxiliary 
prime number ί, and the very different natures of the cohomologies occurring in the 
left-hand (De Rham) and right-hand (etale) columns. 

Both drawbacks would disappear, and the analogy would become much closer, if 
one could replace £ by p, and étale cohomology by some appropriate cohomology of 
De Rham type. 
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