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ON THE STOKES GEOMETRY OF HIGHER ORDER 
PAINLEVÉ EQUATIONS 

by 

Takahiro Kawai, Tatsuya Koike, Yukihiro Nishikawa & Yoshitsugu Takei 

Abstract. — We show several basic properties concerning the relation between the 
Stokes geometry (i.e., configuration of Stokes curves and turning points) of a higher 
order Painlevé equation with a large parameter and the Stokes geometry of (one of) 
the underlying Lax pair. The higher-order Painlevé equation with a large parameter 
to be considered in this paper is one of the members of Pj-hierarchy with J = I, 
II-1 or II-2, which are concretely given in Section 1. Since we deal with higher 
order equations, the Stokes curves may cross; some anomaly called the Nishikawa 
phenomenon may occur at the crossing point, and in this paper we analyze the 
mechanism why and how the Nishikawa phenomenon occurs. Several examples of 
Stokes geometry are given in Section 5 to visualize the core part of our results. 

Résumé (Sur la géométrie de Stokes des équations de Painlevé d'ordre supérieur) 
Nous exhibons plusieurs propriétés fondamentales liant, d'une part, la géométrie 

de Stokes (i.e.. la configuration des courbes de Stokes et des points tournants) d'une 
équation de Painlevé d'ordre supérieur à grand paramètre et, d'autre part, la géomé
trie de Stokes de l'une des paires de Lax sous-j acent es. L'équation de Painlevé d'ordre 
supérieur à grand paramètre considérée est l'une des équations de la hiérarchie Pj 
pour J = I, II-1 ou II-2 que nous détaillons dans le paragraphe 1. Les équations étant 
d'ordre supérieur leurs lignes de Stokes peuvent se croiser et l'anomalie connue sous 
le nom de « phénomène de Nishikawa » peut se produire aux points de croisement. 
Nous analysons le mécanisme par lequel ce phénomène de Nishikawa apparaît. Plu
sieurs exemples de géométrie de Stokes sont donnés dans le paragraphe 5 en vue (hune 
visualisation de la partie centrale de nos résultats. 
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0. Introduction 

This paper is the first of a series of our papers on the exact WKB analysis of 
higher order Painlevé equations. For the sake of the clarity and the uniformity of 
the description we restrict our consideration in this paper to the Pi,Pn_i and PQ-2 
hierarchies with a large parameter 77, which are described explicitly in Section 1. 
Although these hierarchies are basically the same as those discussed by Shimomura 
([S2]), Gordoa-Pickering ([GP]) and Gordoa-Joshi-Pickering ([GJP]), we need to 
appropriately introduce a large parameter r\ in their coefficients together with the 
underlying systems of linear differential equations (the so-called Lax pairs) so that we 
may develop the WKB analysis of the hierarchies in question. As is evident in the 
series of papers ([KT1, A K T 2 , KT2, Tl]; see [KT3] for their resume), the relations 
between the Stokes geometry for (one of) the Lax pair and the appropriately defined 
Stokes geometry for the Painlevé equation play the key role in the WKB analysis of 
the traditional Painlevé equations, i.e., the second order differential equations first 
studied by Painlevé and Gambier. One of our main purposes of this paper is to show 
that the relations observed for the traditional Painlevé equations remain to hold for 
each member in the Painlevé hierarchies considered in this paper (Section 2 ) . Another 
main purpose of this paper is to analyze why the novel and interesting phenomena 
numerically discovered by one of us (Y.N.) should occur in our context (Section 3 ) . 
To analytically detect where the phenomena (the so-called Nishikawa phenomena) are 
observed, we introduce the notion of new Stokes curves in Section 4. In Section 5 we 
present several illuminating examples of Stokes geometry for higher order Painlevé 
equations and the Stokes geometry of their underlying Lax pair. Appendix A gives 
a proof of some properties of auxiliary functions JCj and K3 used in Sections 1 and 2 
to write down the Pn_i-hierarchy with a large parameter. In Appendix B we note 
that the Pi-hierarchy with a large parameter is equivalent to a hierarchy discussed by 
Gordoa and Pickering ([GP]) if a large parameter is appropriately introduced. 

As the discussion of [KT1] etc. uses a Lax pair of single differential equations, the 
results there may look pretty different from the results in this paper, where a Lax pair 
of 2 x 2 systems is used, that is, the framework of Flaschka-Newell ([FN]) and Jimbo-
Miwa ([JM]) is used instead of the framework of Okarnoto ([O]); in particular, the 
apparent singularities which played an important role in [KT1] etc. do not appear in 
this paper. Hence we end this introduction with briefly recalling the geometric results 
in [KT1] which are reformulated for a Lax pair of matrix equations. For the sake 
of simplicity we consider only the first Painlevé equation. Thus, following [JM], we 
start with the following Lax pair: 

( 0 . 1 ) 

0 
Ut

il \ v 0. (O.l.a) 

d 
di 

nB v 0. (O.l.b) 
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where 

(0.2) A 
v(t.r,) 4 ( . I : - M ( M / ) ) 

x2 + u(t. ri)x + u(t. r/)2 + t/2 -v(t. >]) 

and 

(0.3) B 
0 2 

.r/2 f u(t.n) 0 

That is, we consider an isomonodromic deformation (with respect to the variable /) of 

the first matrix equation (0.1.a); the second equation (0.1.b) explicitly describes this 

deformation. To obtain (0.1) we have introduced a large parameter // to the equation 

(C.2) of [JM, p. 437] so that the resulting compatibility condition may become the first 

Painlevé equation with a large parameter rj in [KT1] etc. We have also interchanged 

the first component and the second component of the unknown vector fijj for the sake of 

uniformity of presentation in this paper. The compatibility condition of the equations 

(0.1.a) and (O.l.b). i.e.. 

(0.4) 
OA 

dt 
dB 

dx 
ï](AB - BA) = 0 

can be readily seen to be equivalent to the following system (H\): 

(0.5) (H1) 

du 

dt 
nv 

de 

dt 
fj{6u2 + t) 

We next construct the so-called 0-parameter solution (u.v) of (H\) which has the 

following form: 

(0.6) u(t.ri) = ûa(t) + ir '»,(/) + ••• . 

(0.7) v(t,r,) = ?0(t) + rr[v1(t) + --- . 

It is known that, although (w. ?) is a divergent series, it is Borel summable. Note that 

(0.8) GUQ + t = 0 and VQ = 0 

hold and that Uj and ?y (j > 1) are recursively determined. Substituting (u.v) into 

the coefficients of A and B, we let Ao and Bo denote their top degree part in //, that 

is. 

(0.9) A0 
0 4(:;:-M„(f)) 

.r2 + Ti\)(t)x + n)(tf + t/2 0 

(0.10) Bo 
0 2 

J-/2+«ü(0 0 

To consider the linearization of (Hi) at (v. v). we set it — ti+Att and v = v+Av in (0.5) 
and eonsider the part linear in (Au. Ac). (Although the terminology "linearization" 
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used here has a completely different meaning from that used in [JM], we hope there 

is no fear of confusions; in [JM] etc., the linearization of (H\) means the system (0.1) 

of linear differential equations.) Then we obtain 

(0.11) 
d 

dt 

'Au 

At;, 
- V 

0 1 
1212 0 

Au 

Av 

Let C and CQ respectively denote 

(0.12) 
0 1N 

12Û 0, 

and 

(0.13) 
0 1 

I2u0 ()/ 

Concerning the matrices AQ,B0 and CQ we find the following several relations. 

First of all, (0.8) immediately entails 

(0.14) Ai) = 2(x-ÏÏ0)B{). 

This relation leads to the following 

Fact A 

(i) The equation (0.1.a) has one double turning point x — Uo(t) if UQ ^ 0. 

(ii) It has one simple turning poi/nt x = — 2u0(t) if u0 ^ 0, and this point is a 

turning point of the equation (O.l.b). 

Here and in what follows we use the terminology "a turning 1)01111" for a matrix 

equation like (0.1.a) to mean, as usual, a point where eigenvalues of its highest degree 

part in // (i.e., the matrix A{) in the case of (0.1.a)) merge. In other words, a turning 

point is a zero of the discriminant of the characteristic equation of the highest degree 

part, and it is said to be simple (resp. double) if it is a simple (resp. double) zero of 

the discriminant. We next obtain 

(0.15) 12u(1(f)«o(f)' + 1 = 0 

by differentiating (0.8). Then this relation proves the following 

FactB. The eigenvalues \± of Ao (i.e.. ±2(.r — M())\JX + 2«o) and the eigenvalues 

LI± of B{) (i.e.. ±\/x + 2v?o) satisfy the following relation: 

(0.16) 
0 

dt 
a+- 0 

Ox / '±-

The following Fact C might look too trivial to note, but for the sake of later 
references we note it here. 
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