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ASYMPTOTICS FOR GENERAL CONNECTIONS 
AT INFINITY 

by 

Carlos Simpson 

Abstract. — For a standard path of connections going to a generic point at infinity 
in the moduli space A/rjR of connections on a compact Riemann surface, we show 
that the Laplace transform of the family of monodromy matrices has an analytic con­
tinuation with locally finite branching. In particular, the convex subset representing 
the exponential growth rate of the monodromy is a polygon whose vertices are in a 
subset of points described explicitly in terms of the spectral curve. Unfortunately, we 
don't get any information about the size of the singularities of the Laplace transform, 
which is why we can't get asymptotic expansions for the monodromy. 
Résumé (Asymptotique des connexions génériques à l'infini). — Pour une courbe stan­
dard allant vers un point général à l'infini dans l'espace des modules A/QR des 
connexions sur une surface de Riemann compacte, nous montrons que le transformé de 
Laplace de la famille des matrices de monodromie admet un prolongement analytique 
avec ramification localement finie. En particulier, l'ensemble convexe qui représente 
la croissance exponentielle est un polygone dont les sommets sont dans un ensemble 
qu'on peut expliciter en termes de la courbe spectrale. Malheureusement, nous n'ob­
tenons pas d'information sur la taille des singularités du transformé de Laplace et 
donc pas de développement asymptotique pour la monodromie. 

1. I n t r o d u c t i o n 

We study the asymptotic behavior of the monodromy of connections near a general 
point at oc in the space Alim of connections on a compact Riemann surface X. We 
will consider a path of connections of the form (E. V + W) which approaches the 
boundary divisor transversally at the point on the boundary of M OR corresponding 
to a general Higgs bundle (E. 0). By some meroniorphic gauge transformations in §5 
we reduce to the case of a family of connections of the form d + B + t.A. This is very 
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similar to what was treated in [36] except that here our matrix B may have poles. 
We import the vast majority of our techniques directly from there. The difficulty 
posed by the poles of B is the new phenomenon which is treated here. We are not 
able to get results as good as the precise asymptotic expansions of [36]. We just show 
in Theorem 6.3 (p. 205) that if rn(t) denotes the family of monodromy or transport 
matrices for a given path, then the Laplace transform f(Q of m has an analytic 
continuation with locally finite singularities over the complex plane (see Definition 
6.2, p. 205). The singularities are what determine the asymptotic behavior of m(t). 
The upside of this situation is that since we are aiming for less, we can considerably 
simplify certain parts of the argument. What we don't know is the behavior of /(£) 
near the singularities: the main question left open is whether / has polynomial growth 
at the singularities, and if so, to what extent the generalized Laurent series can be 
calculated from the individual terms in our integral expression for / . 

We can get some information about where the singularities are. Fix a general point 
(E,6). Recall from [26, 27, 19, 30] that the spectral curve V is the subset of points 
in T*(X) corresponding to eigenforms of 9. We have a proper mapping TT : V —> X. In 
the case of a general point, V is smooth and the mapping has only simple ramification 
points. Also there is a tautological one-form 

a G H°(V,7T*nl

x) C ir(V.ivv). 

Finally there is a line bundle L over V such that E = 7r*(L) and 6 corresponds to 
the action of a on the direct image bundle. This is all just a geometric version of the 
diagonalization of 6 considered as a matrix over the function field of X. 

Let 7Z C X denote the subset of points over which the spectral curve is ramified, 
that is the image of the set of branch points of TT. It is the set of turning points of our 
singular perturbation problem. Suppose p and q are points in X joined by a path 7. 
A piecewise homotopy lifting of 7 to the spectral curve V consists of a collection of 
paths 

7 — {~/}/ 1 /•• 

such that each 7̂  is a continuous path in V. and such that if we denote by 7̂  := TT 
the image paths in V, then 71 starts at p. 7/,. ends at q, and for / — 1 // 1. the 
endpoint of 7i is equal to the starting point of 7^+1 and this is a point in 7Z. Among 
these there is a much more natural class of paths which are the continuous homotopy 
liftings, namely those where the endpoint of 7,- is equal to the starting point of 77 + 1 

(which is not necessarily the case for a general piecewise lifting). 
Denote by £(7) C C the set of integrals of the tautological form a along piecewise 

homotopy liftings of 7, i.e.. the set of complex numbers of the form 

a = I o := Y, I «• 
Jl / = 1 -'li 
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Let E c o n t ( 7 ) be the subset of integrals along the continuous homotopy liftings. The 
following is the statement of Theorem 6.3 augmented with a little bit of information 
about where the singularities are. 

Theorem 1.1. — Let p. q be two points on X, and let 7 denote a path from p to q. Let 
V + t6)} denote a eurve of connections cutting the divisor PDR at a general point 

(E,0) and let (V.a.L) denote the spectral data for this Higgs bundle. Let in(t) be the 
function (with values in Hom(Ep. Eq)) whose value at t; £ C is the transport matrix 
for the connection V + tO from p to q along the path 7. Let f(Q) denote the Laplace 
transform of m. Then, f has an analytic continuation with locally finite singularities 
over the complex plane. The set of singularities which, are ever- encountered is a subset 
of the set £(7) C C of integrals of the tautological form along piecewise homotopy 
liftings defi/ned above. 

It would have been much nicer to be able to say that the set of singularities is 
contained in E c o l l t (7 ) , however I don't see that this is necessarily the case. However, 
it might be that the singularities in E ( ' o l l t ,(7) have a special form different from the 
others. This is an interesting question for further research. 

Ths first singularities which are encountered in the analytic continuation of / de­
termine the growth rate of m(t) in a way which wre briefly formalize. Suppose that 
•m(t) is an entire function with exponentially bounded growth. We say that ///(/) is 
rapidly decreasing in a sector, if for some (open) sector of complex numbers going to 
oc. there is e > 0 giving a bound of the form \m(t)\ ^ c~£'fL Define the ////// of 711 by 

hull(m) := {( £ C I e _ ( ,*m(/) not rapidly decreasing in any sector}. 

It is clear from the definition that the set of £ such that ( ^'ni(l) is rapidly decreasing 
in some sector, is open. Therefore hull(m) is closed. It is also not too hard to see that 
it is convex (see ^ 13). Note that the hull is defined entirely in terms of the growth 
rate of the4 function ///. 

Corollary 1.2. - In the situation of Tfieorem 1.1, the hull of m is a finite convex 
polygon with at least two vertices, and all of its vertices are contained in E(7). 

The above results fall into the realm of singular perturbation theory for systems 
of ordinary differential equations, which goes back at least to Liouville. A steady 
stream of progress in this theory has led to a vast literature which we don't attempt 
completely to cover here (and which the reader can explore by using internet and 
database search techniques, starting for example from the authors mentionned in the 
bibliography). 

Recall that following [4]. Voros and Ecalle looked at these questions from 1 he view­
point of "resurgent functions" [43, 44, 42, 21, 20, 22, 7, 9, 15]. In the terminology 
of Ecalle's article in [7]. the singular perturbation problem we are considering here 
is an example of co-equational resurgence. Our approach is very related to this view­
point, though self-contained. We use a notion of analytic continuation of the Laplace 
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transform 6.2 which is a sort of weak version of resurgence, like that used in [15] and 
[9]. The elements of our expansion 6.1 are what Ecalle calls the ^elementary mono­
mials'' and the trees which appear in §8 are related to (co)'moulds (co)arborescents, 
see [7]. Conversion properties related to the trees have been discussed in [23] (which 
is on the subject of KAIM theory [24]). The relationship with integrals on a spectral 
curve was explicit in [14]. [15]. The works [42]. Ecalle's article in [7]. and [15]. raise 
a number of questions about how to prove resurgence for certain classes of singular 
perturbation problems notably some arising in quantum mechanics. A number of 
subsequent articles treat these questions; I haven't been able to include everything 
here but some examples are [23], [16]. [17]. . . . (and apparently [46]). In particular 
[17] discuss extensively the way in which the singularities of the Laplace transform 
determine the asymptotic behavior of the original function, specially in the case of 
the kinds of integrals which appear as terms in the decomposition 6.1. 

There are a number of other currents of thought about the problem of singular 
perturbations. It is undoubtedly important to pursue the relationship with all of 
these. For example, the study initiated in [6] and continuing with several articles 
in [7]. as well as the more modern [1] (also Prof. Kawai's talk at this conference) 
indicates that there is an intricate and fascinating geometry in the propagation of 
the Stokes phenomenon. And on the other hand it would be good to understand the 
relationship with the local study of turning points such as in [8]. [41]. The article 
[16] incorporates some aspects of all of these approaches, and one can see [5] for a 
physical perspective. Also works on Painleve's equations and isomonodromy such as 
[11, 28, 34, 45] are probably relevant . 

Even though he doesn't appear in the references of [36]. the ideas of J.-P. Ramis 
indirectly had a profound influence on that work (and hence on the present note). 
This can be traced to at least two inputs as follows: 

(1) I had previously followed G. Laumon's course about f-adic Fourier transform, 
which was partly inspired by the corresponding notions in complex function theory, 
a subject in which Ramis (and Ecalle. Voros. . . . ) had a great influence: and 

(2) at the time of writing [36] I was following N. Katz's course about exponen­
tial sums, where again much of the inspiration came from Ramis' work (which Katz 
mentionned very often) on irregular singularities. 

Thus I would like to take this opportunity to thank Jean-Pierre for inspiring such 
a rich mathematical context. 

I would also like to thank the several participants who made interesting remarks 
and posed interesting questions. In particular F. Pham pointed out that it would be 
a good idea to look at what the formula for the location of the singularities actually 
said, leading to the statement of Theorem G.3 in its above form. I haven't been able 
to treat other suggestions (D. Sauzin. . . . ). such as looking at the differential equation 
satisfied by / ( ( ) • 
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