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GENERATING FUNCTION ASSOCIATED WITH 
THE DETERMINANT FORMULA FOR THE SOLUTIONS OF 

THE PAINLEVÉ II EQUATION 

by 

Nalini Joshi, Kenji Kajiwara & Marta Mazzocco 

Abstract. — In this paper we consider a Hankel determinant formula for generic 
solutions of the Painlevé II equation. We show that the generating functions for the 
entries of the Hankel determinants are related to the asymptotic solution at infinity 
of the linear problem of which the Painlevé II equation describes the isomonodromic 
deformations. 

Résumé (Fonction génératrice associée à la formule déterminant pour les solutions de 

l'équation de Painlevé II) 

On s'intéresse à la formule déterminant de Hankel pour les solutions génériques 
de réquation de Painlevé II. On établit une relation reliant les fonctions génératrices 
des coefficients des déterminants de Hankel aux solutions asymptotiques à h infini 
du problème linéaire dont les déformations isomonodromiques sont décrites par cette 
équation de Painlevé II. 

1. I n t r o d u c t i o n 

The Painlevé II equation (Pu) , 

(1) 
d2u 

dx2 
2u:] - 4xu + 4 

1 
a + 2 

where a is a parameter, is one of the most important equations in the theory of 

nonlinear integrable systems. It is well-known that Pu admits unique rational solution 

when a is a half-integer, and one-parameter family of solutions expressible in terms 

of the solutions of the Airy equation when a is an integer. Otherwise the solution is 

non-classical [13, 14, 17]. 
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The rational solutions for P n ( l ) are (expressed as logarithmic derivative1 of the ratio 

of certain special polynomials, which are called the ''Yablonski-Vorob'ev polynomials", 

[18, 20] . Yablonski-Vorob'ev polynomials admit two determinant formulas, namely. 

Jacobi-Trudi type and Hankel type. The latter is described as follows: For each 

positive integer TV, the unique rational solution for a = N -f 1/2 is given by 

u 
d 

dx 
log 

GN+1 

GN 
where cryv is the Hankel determinant 

O~N 

(L{) (I i • • • CIN-i 

a i (¿2 • • • a M 

aN-1aN... a2N-2 

with an = a,,(./') being polynomials defined by the recurrence relation 

(2) 

do = .T, ax = 1. 

an+1 
dau 

dx 

k=0 

k-() 

( l n - l - k . 

The Jacobi-Trudi type formula implies that the Yablonski-Vorob'ev polynomials 

are nothing but the specialization of the Schur functions [12]. Then, what does the 

Hankel determinant formula mean? In order to answer this question, a generating 

function for an is constructed in [6]: 

Theorem 1.1 ([6]). Let O(x.t) be an entixe function of two variables defined by 

(3) Q(xA) = exp (2/:7:V) A\(t2 - x ) . 

where A\(z) is the Airy function. Then there exists an asymptotic expansion 

(4) 
d 

Ot 
log O (x,t) 

OG 

n = 0 

a„(x)(-2t)-". 

as t —> oc in any proper sub sector of the sector argf < T T / 2 . 

This result is quite suggestive, because it shows that the Airy functions enter twice 

in the theory of classical solutions of the Pn: 

(1) in the formula [3] 

u 
d 

dx 
log Ai 2]/V a = 0. 

the one parameter family of classical solutions of Pn for integer values of a is expressed 

by Airy functions, 

(2) in formulae (3), (4) the Airy functions generate the entries of determinant 

formula for the rational solutions. 
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In this paper we clarify the nature of this phenomenon. First, we reformulate 
the Hankel determinant formula for generic, namely non-classical, solutions of Pn 
already found in [10, 11]. We next construct generating functions for the entries 
of our Hankel determinant formula. We then show that the generating functions are 
related to the asymptotic solution at infinity of the isomonodromic problem introduced 
by Jirnbo and Miwa [9]. More explicitly, the generating functions we construct are 
represented formally by series in powers of a variable t that does not appear in the 
second Painleve equation. We show that they satisfy two Riccati equations, one in 
the x variable of Pn, the other in the auxiliary variable t. These Riccati equations 
simultaneously linearise to the two linear systems whose compatibility is given by Pn. 
This is the first time in the literature, to our knowledge, that the construction of the 
isomonodromic deformation problem has been carried out by starting directly from 
the Painleve equation of interest. 

This result explains the appearance of the Airy functions in Theorem 1.1. In fact, 
for rational solutions of Pn, the asymptotic solution at infinity of the isomonodromic 
problem is indeed constructed in terms of Airy functions [7, 8, 15]. 

We expect that the generic solutions of the so-called Painleve II hierarchy [1, 2, 4] 
should be expressed by some Hankel determinant formula. Of course the generating 
functions for the entries of Hankel determinant should be related to the asymptotic 
solution at infinity of the isomonodromic problem for the Painleve II hierarchy. We 
also expect that the similar phenomena can be seen for other Painleve equations. We 
shall discuss these generalizations in future publications. 

Acknowledgements. The authors thank Prof. H. Sakai for informing them of refer
ences [7, 8]. They also thank Prof. K. Okamoto for discussions and encouragement. 

2. Hankel Determinant Formula and Isomonodromic Problem 

2.1. Hankel Determinant Formula. — We first prepare the Hankel determinant 
formula for generic solutions for Pn (1). To show the parameter dependence explicitly, 
we denote equation (1) as Pn[a]. The formula is based on the fact that the r functions 
for Pn satisfy the Toda equation, 

(5) G"nGn-(G'n)2 = Gn+1Gn-1, n E Z. ' = d/dx. 

Putting TN = (Jn/<7o so that the r function is normalized as TQ = 1, equation (5) is 

rewritten as 

(6) r"XTN - (r'J2 = Tn+i7v,_i - r_i=-0, TO = 1, T i = p , rieZ. 

Then it is known that rn can be written in terms of Hankel determinant as follows 

fill: 
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Proposition 2.1. Let {a„ }„.• y.. {bn}iiea be the sequences defined recursively as 

(7) an a'n-1 + v 

i+j = n-2 

aiaj, bn = b'n-1 + g 

i + j = n-2 

bibj, ri0 = y, bo - 0 . 

For any N G Z, we define Hankel determinant TN by 

(8) TN 

d e t f r / , . , 2 )/,>•' A' 

1. 

det(^+J_2),,K|Arl 

N > 0, 

TV < 0. 

JTzen TN satisfies equation (6). 

Since the above formula involves two arbitrary functions p and 0, it can be regarded 

as the determinant formula for general solution of the To da equation. Imposing 

appropriate conditions on p and 0, we obtain determinant formula for the solutions 

of P „ : 

Proposition 2.2. Let 0 and p be functions in x satisfying 

(9) 
w" 

v•è 

a 

a 
- 2 i / v + 

(10) p'lh — ptp = 2a. 

Then we have the following: 

(1) uQ = ( l og9)' satisfi.es Pu[a]. 

(2) it— i = - ( l o g ^ ) ' satisfies Pn\a - l l . 

(3) UN log TAr + l . where is defined by equation (8), satisfies Pn[a -f N]. 

Proof (i) and (ii) can be directly checked by using the relations (9) and (10). Then 

(iii) is the reformulation of Theorem 4.2 in [10]. • 

2.2. Riccati Equations for Generating Functions. — Consider the generating 

functions for the entries as the following formal series 

( 1 1 ) 
F8(x,t) 

71 = 0 

OC 

(in{x) t~\ G^(x.t) 
n = Q 

oc 

b„(x) r " . 

It follows from the recursion relations (7) that the generating functions formally satisfy 

the Riccati equations. In fact, multiplying the recursion relations (7) by t~n and take 

the summation from n — 0 to oc, we have: 

Proposition 2.3. The generating functions Foc(x:t) and (Ï x (./'. / ) formally satisfy 

the Riccati equations 

(12) t 
OF 

Ox 
-ipF2 + t2F - t2^. 

(13) t 
0G 

Ox 
-^G2 + t2G - t2tJK 

respectively. 
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