Astérisque
312, 2007, p. 1-7

2. MODULAR POLYNOMIALS

by

Gunther Vogel

Abstract. — We introduce the classical modular polynomials and calculate (mod-
ulo the determination of a certain sum of representation numbers) the intersection
number of two divisors defined by modular polynomials (Hurwitz’s theorem).

Résumé (Polyndomes modulaires). — On introduit les polynomes modulaires classiques
et détermine (modulo le calcul d’une certaine somme de nombres de représentations)
le nombre d’intersection de deux diviseurs définis par des polynémes modulaires (théo-
reme de Hurwitz).

We introduce modular polynomials and prove some elementary properties. This
is classical and well-known, see e.g. [L, §5]. In the second part, we compute the
intersection numbers of the divisors defined by two modular polynomials in the 2-
dimensional complex plane. This computation, due to Gross and Keating ([GK]),
re-proves the class number relations of Kronecker (Corollary 2.2).

We only consider elliptic curves over C.

1. Modular Polynomials

Let m € N. Consider the elliptic curve £ = C/T" with I' = Z + Z7 for some 7 € H.

Theorem 1.1 ([L, §5.3,5.1]). — There are canonical bijections between the following
sets:
(i) isomorphism classes of isogenies f: Ey — E of degree m (as yroup schemes
over E),
(ii) subgroups I'y C T of index m,
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2 G. VOGEL

(iil) SL2(Z)\{A € M2(Z) | det A = m}, and
(iv) {(83) € MQ(Z)|ad:m, a>1and0 §b<d}.

All of these sets have o1(m) = Zd|m d elements.

Proof

(i)—(ii): Set I'y := fom(E1). (11)—(i): Set £y := C/T';.

(ii) <= (iii): Choose a basis (¢4) (L) of I'y with A= (%) € My(Z).

(iii)«>(iv): Left multiplication by matrices from SLo(Z) corresponds to row oper-
ations. The matrices in (iv) are obviously inequivalent (the columns must be stabi-
lized). O

Now consider pairs (7, ') of j-invariants of elliptic curves E, E’ such that there is
an isogeny E — FE’ of degree m. These pairs are described by the divisor of a certain
polynomial ¢,,:

For j,j" € C choose elliptic curves E, E' having j-invariants j, j', respectively. Set

Qam(jﬁj/) = Som(.ﬂE H (J - ] E/))

E|—E'

the product is over isomorphism classes of isogenies F — FE’ of degree m. ¢,, does
not depend on the choices made and is a polynomial of degree o;(m) in j. For elliptic
curves E, F’, the condition ¢, (j(E),j(E")) = 0 is equivalent to the existence of an
isogeny E — E’ of degree m.

Define ¥y, (7, 7°) by the same formula, but restrict the product to the isogenies which
do not factor over some multiplication-by-n map, n > 1. In the above correspondence,
these isogenies correspond to primitive matrices, i.e., matrices whose entries have no

m = H wm/n'z‘

n2|\m
Obviously, ¢1(X,Y) = 1 (X,Y) = X — Y. As we will see below, ¢,,, and v, are
polynomials; they are called modular polynomials.

common divisor. We have

Theorem 1.2 ([L, §5.2])
(1) Om, Ym € Z[X, Y]
(i) (X, t) is @rreducible over C(t).
(iii) For m > 1, we have ¥, (X,Y) = (Y. X). Consequently, om(X,Y) =
+on (Y, X) (“= 7 precisely if m is a square).

Proof
(i) First notice that the coefficients k; of

U (X, §(71) = 1T (X — j(AT)) € Oc[X]

SLy(Z)\{A€My(Z)|det A = m, A primitive}
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2. MODULAR POLYNOMIALS 3

are holomorphic in 7/ and invariant under SL2(Z). From the formula

) a5 =[] <X—j(mld+b)> = ];[d<X— m —Ta )

a,b, a,b,

(a,b,d as in 1.1 (iv) and (8 g) primitive, ¢, := e>™/™) we see that the k; are mero-
morphic at infinity. Since the g-expansion of the j-function has integral coefficients,
we have

b e 2l 2]

Now there are polynomials p; € Z[(y,,T] such that k; — p;(ji(¢’)) lies in ¢'Z[¢m][[¢']]
and therefore, being a modular function, must vanish identically. Hence, 9, €
Zw][X, Y.

There are two operations of (Z/mZ)*: first, on matrices (&%) as in 1.1 (iv) by

o (g Z) = (g ?) (via (Z/dZ)* on {0,...,d — 1} = Z/dZ),
and the first product in (x) is invariant under this operation. Second, (Z/mZ)*
operates in a compatible way on Z[(,,] by 0(n = €2, and since the coefficients of ¢y,
are invariant under this operation, we find that ¢, € Z[X,Y].

(ii) By mapping t — 7, the field of meromorphic functions on H becomes an
extension field of C(t) carrying an operation of the group SLo(Z). By the elementary
divisors theorem, it permutes the zeroes of ,,(X,t) transitively, hence 1., (X, t) is
irreducible over C(t).

(iii) The condition ¥, (j(E),j'(F)) = 0 is equivalent to the existence of an
isogeny E — E’ of degree m which does not factor over a multiplication-by-n
map for some n > 1. This last property is also true for its dual isogeny, hence
Y (7 (E"),j(E)) = 0. For a fixed j), the irreducible polynomial ¢, (X, j{) is therefore
a divisor of 9., (3}, X), and conversely. It follows that 1, (j, 7’) = £¥m(§’, j). If the
“—7sign is correct, P, (¢, t) vanishes identically, so 1, (X, t) has a zero in C(t), hence
the degree of 1, (X, t) must be 1. This is true precisely for m = 1. O

From the proof of (iii) we also see that f,,(X) := ¢, (X, X) vanishes if and only if
m is a square. If m is not a square, the degree of f,,, can be read off the g-expansion
in (x): set X = j(¢'), then because of a # d, the pole order of one factor is equal
to max{1, a/d}, hence the pole order of the entire product is

deg fo, = Z dmax{l,a/d} = Z max{a,d}.

ad=m ad=m

One also sees that the leading coefficient of f,, is £1.
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2. Intersections

We first need to fix some notation. A quadratic space (L, @) over a ring R consists
of a free R-module L of finite rank and a quadratic form @ on L. The associated
bilinear form on L is defined by

(z,y) = Qz +y) - Qx) - Qy).
The determinant of @ is the element of R/(R*)? given by the determinant of the
matrix ((b;,b;));; for some basis {b;} of L. The diagonal of @ with respect to some
fixed basis {b;} is defined to be the n-tuple (Q(b;)); where n is the rank of L.
For a quadratic form F on R, we define the representation number Ry (F') as the
cardinality of the set

{(f) e L™ | Qzifi + -+ xmfm) = F(x1,...,2m) for all z € R™}
= {isometries (R™, F) — (L,Q)}.

For R = Z and positive definite @, this set is finite. (For each x = ¢;, ¢ =1,...,m,
there are only finitely many possible values of x1 f1 + - + @y frn = fil)

For a positive integer D, let H(D) be the number of SLy(Z)-equivalence classes of
positive definite binary quadratic forms over Z with determinant D (which is well-
defined as an element of Z), counting the forms equivalent to ex? + ex3 and ex? +
ex1wy + ex3 for some natural number e with multiplicities 1/2 and 1/3, respectively.
If the positive integer m is not a square, we define

G(m) = Z H(4m — t?).

teZ
t?<4am

Define Ty, := V(pm) C A%.
Theorem 2.1 (|GK, 2.4]). The curves Ty,, and T, intersect properly if and only

if m = myms is not a square. In this case, their intersection is supported on pairs
(E, E') of elliptic curves with complex multiplication by orders whose discriminants

satisfy d(E),d(E") > —4m. The intersection number is
dm — t2
Do Toa= 3 3 dH(TE=)= 3 nGlm/nd)
teZ d|ged(my,ma,t) n|ged(my,m2)
t?<4m
Proof. — If m = myms is a square, T,,, and T,,, contain V(¢4), g = gcd(m1, ma), as

a common component (note that my/g and my/g are coprime, hence squares them-
selves). Conversely, if T},, and T,,,, do not intersect properly, they must contain some
V(thy) as a common component, but then g = m1/n? = ma/n3, so m = g*nin is a
square.

For a pair of elliptic curves (F,E’) corresponding to an intersection point of
Ty, and T,,,, there are isogenies fi, fo: E — E’ of degrees m; and msg, respec-

tively. Then, « := fof; is an endomorphism of E of degree m. Since m is not a
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2. MODULAR POLYNOMIALS 5

square, E has complex multiplication, and Z + Z« is a sublattice of End . Hence,
its discriminant (Tr «)? — 4m < 0 is divisible by d(E), so

d(E) > (Tra)? — 4m > —4m.

Similarly, considering 3 := fy!fy, it follows that d(E’) > —4m.

Next, we compute the local intersection number at some point (jo,j3) € C? cor-
responding to a pair of elliptic curves (F,E’). Set up := %# Aut E, similarly for
E’. Choose 7, € H such that j(7j) = jj. Locally at 7, the map j: H — C is a
branched covering of degree ug, so the local intersection number in the (j, j’)-plane
is the intersection number in the (j,7')-plane divided by ug.

In the (j,7')-plane, the ¢,,, decompose into factors of the form
Jj— (AT where A; € My(Z), det A; = m;.

Therefore, it suffices to compute the local intersection number of two such factors,
both vanishing at (jo, 74). This number is the zero order of

(%) J(ALT) = j(AsT')

74 Since A7) and A7) are SLo(Z)-equivalent, we may assume that A7y =
Aot =: 19 and ¢y = 0. Locally at 7
0 )

at 7/

gty =j(10) + s (7 — 70)"# + higher order terms

for some s # 0, hence (kx) is of the form

((W’ b g+ b )b (aQT’ by aoTh+ b
- — S —
ar' +di at)+d ds do

det A uE det Ay up
= 9<m (= 7'6)) - 5( z (r' - Té)) + h.o.t.

locally at 7. We now claim that the two leading coefficients are different. (However,

ug
) + h.o.t.

they have the same absolute value.) Otherwise, from

(s ) = ()

we get
ity +di ds

VAL w /M2

for some 2up-th root of unity w, implying

(x5%) atyt+d =w- mamz
a

The left-hand side is imaginary-quadratic, so by our assumption that m = myms is

not a square it follows that w = +i and ug = 2. But in this case, 7} corresponds to an

elliptic curve isogenous to E = C/(1,1i), hence 7§ € Q(i), contradicting (+*x). Hence,

the zero order of (xx) at 7} equals ug.
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