
Astérisque 
312, 2007, p. 87-98 

9. C A N O N I C A L AND Q U A S I - C A N O N I C A L L I F T I N G S IN 

T H E SPLIT C A S E 

by 

Volker Meusers 

Abstract. — Following Gross we sketch a theory of quasi-canonical liftings when the 
formal Ok-module of height two and dimension one is replaced by a divisible O x -
module of height one and dimension one in the sense of Drinfel'd. 

Résumé (Relèvements canoniques et quasi-canoniques dans le cas déployé). — Suivant 
Gross, on donne une théorie de relèvements quasi-canoniques dans le cas où le Ok 
module de hauteur deux et de dimension un est remplacé par un ok-module divisible 
de hauteur un et de dimension un au sens de Drinfel'd. 

In this paper, we follow up on a remark by Gross [G] and discuss a theory of 
quasi-canonical liftings when the formal Ok-module of height two and dimension one 
considered in [ W w l ] is replaced by a divisible Ok-module of height one and dimension 
one in the sense of Drinfel'd [D]. In this situation the statements analogous to those 
in [G], [ W w l ] are easy consequences of Lubin-Tate theory and of a slight modification 
of the Serre-Tate theorem for ordinary elliptic curves, as discussed in the appendix 
to [Mes]. 

1. Formal moduli of divisible Ok-modules 

Let k be a held complete with respect to some discrete valuation. Let OK be its 
ring of integers, p = (TT) its maximal ideal. We assume the residue field OK/P to be 
finite and let q denote the number of its elements. For any non-zero ideal a C OK we 
set N(a) := |(Ok/a|, i.e., N(ps) = qs. Let k be an algebraic closure of OK/P- Let M 
be the completion of the maximal unramified extension of K in some fixed separable 
closure KSEP. Denote the completion of KSEP by C. Let OM and Oc be the rings of 
integers in M and C respectively. 

Following [D, §4] a formal group is a group object in the category of formal schemes. 
For example any group scheme or any discrete group is a formal group in this sense. 
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For a formal group F let us denote by F° its connected component. Let C be the 
category of complete local noetherian (9M-algebras with residue field k. 

Definition 1.1. — Let R G C. A divisible Ox-module over R is a pair F, where F is 
a formal group over R and jf • O x —» End#(F) is a homomorphism such that F° is 
a formal Ox-module of height h < oo in the sense of [VZ], and such that 

F / F ° = K / O K ) > S P F ( R ) 

for some j < oo. The pair (h,j) will be called type of F. 

To ease the notation, we will suppress the structure map 7 ^ of an Ox-module F 
and simply write F. 

Drinfel'd shows that a divisible Ox-module over k is up to isomorphism given by 
its type {hj) (see [D, §4]). 

Example 1.2. — For K = Qp, O x = ^ the product group G = Gm,R x (QP/^P)R is 
an example of a divisible module of type (h,j) = (1 ,1) over R. 

If G C is artinian then the category of fppf-abelian sheaves on R with O x -
structure is an abelian category, the category of Ox-modules over R. It is useful 
to view the category of divisible Ox-modules over R as a full sub-category of this 
category. 

Definition 1.3. — Fix a divisible Ox-module G over k. A deformation of G to R G 
C is a pair (F, ip) consisting of a divisible Ox-module F over R together with an 
isomorphism ip: F 0 x k -=> G of Ox-modules. 

The deformations of G to R G C form a category in a natural way. One checks 
that it is a groupoid and moreover that no object of this groupoid has non-trivial 
automorphisms. The last point is due to the fact that for a deformation F the 
isomorphism yj is part of the data. Nevertheless we often omit yb from the notation. 

Definition 1.4. — For any R G C let us denote by VQ(R) the set of isomorphism 
classes of the groupoid of deformations of G to R. Then VQ becomes a set-valued 
functor on C. 

Fix a formal Ox-module HQ of height h = 1 over k. It has a trivial deformation 
space, i.e., VH0(R) = {point} for any R G C. More precisely T>H0 is representable 
by OM- This follows easily from the uniqueness of Lubin-Tate modules (see [Mel] ; 
see also Remark 1.11(h) for a far more general result of Drinfel'd). Let us denote by 
H the unique lift of HQ to OM- We assume, as we may, that H is given as the base 
change 

H = HF ®QK 0M, 
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where Hf is the Lubin-Tate module over O x corresponding to some fixed prime 
element TT £ OK and some fixed Lubin-Tate series / £ JRN. Recall from [Mel , 
Lemma 1.7] that the isomorphism class of H does not depend on these choices. 
Recall further that for any R £ C we have H(R) — xxir as a set. The Ox-module 
structure is given as follows: For q, q' £ H(R) and z £ OK we have q +H Q1 — H(q, qf) 
and z -H q = [z]f{q). We often omit the subscript H from the notation. 

Now fix some divisible Ox-module G over K of height H = 1 such that there is an 
isomorphism G/G° = (i^/Ox)/c- Fix an isomorphism of divisible O-modules 

r:G^H0x{K/OK)k 

where H is the unique lift of G° to OM as above. Two such isomorphisms differ by an 
element of the automorphism group of the right hand side. This group is described 
by the following easy but important lemma. 

Lemma 1.5 
(1) We have 

Hom0x,fc((K/Ox)fc,#o) = {0} = RomoK,k(HoAK/OK)k) 

and 
ENDOK,k(HO)= OK= ENDOK,k((K/0K)k). 

(2) IN PARTICULAR THERE IS A CANONICAL ISOMORPHISM 

O K X O K ^ ENDOK,(H0 x (KIOK)K). 

It induces an isomorphism 

OYKXOYK^ AUTOK,K(H0 x (K/0K)K). 

PROOF. — It clearly suffices to prove the first point. We have 
HOMOK,K((K/0K)K,HO) = ROMOK(K/OK,H0(K)) = {0} 

by adjunction and because HO(K) = { 0 } . We have 

HomOKHO, {K/0K)k) = Home^^tfo , {K/OK)1) = {0} 

because H0 is connected and (K/Ok)° = {0} . We have 

endOk, k(ho)=Ok 

because by Lubin-Tate theory every endomorphism of H0 is uniquely given by its 
differential at zero. We have 

ENDOK,k((K/0K)k)= ENDOK(K/0K) 

by adjunction. Since the natural map 

OK —>EVDOK(K/0K) 

is well known to be an isomorphism we are done. • 

We want to sketch a proof of the following theorem (compare the analogous state-
ment in [VZ, Theorem 3.8]): 
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Theorem 1.6 (Universal deformation). — For any R G C and fixed isomorphism r 
there is a natural isomorphism 

VR- VG(R) H(R). 

In particular VQ can be given the structure of an Ox-module (depending on r ( 
course). Since we assume H = Hf ®oK OM, the Ox-module structure is given b 
Lubin-Tate theory as recalled above. 

The proof will take up the rest of this section. One proceeds as in [Mes, appendix 
In the course of the proof we will identify both, T>G{R) and H(R) for R £ C artiniai 
with a certain Ext-group. So let us briefly recall the definition and some bas: 
properties of these groups. A careful discussion can be found in [Mt, chapter VII]. 

For objects M" and M' of an abelian category A let 

SxtA(M",Mf) 

denote the groupoid of extensions (M,p, i): M' ^ M -» M". It is well known that 
the map 

Honu ( M " , M ' ) ^8xtA(M"M'){{M,p,i)) 

e i d M -\-i o (p o p 

is an isomorphism of groups. In particular the automorphism group of (M,_p, i) is 
trivial if and only if Horn a (M", M') is. Let 

ExtA(M",M') 

be the class of isomorphism classes of 8xtj,{M",M'). Assume it to be a set. Some-
times we will not distinguish an extension from its isomorphism class. Using Baer-
addition Ext^(M",M7) becomes an abelian group in the usual way. For N' G A 
let 

(1.1) 5(M,P,O,iv,: Hom^(M/,A^/) E x t ^ ( M " , A O . 

be the boundary homomorphism 

Apply this in the case that A is the category of O^-niodules on some fixed artinian 
R G C. In this case the Ext-groups are in fact Ox-modules. 

Definition 1.7. — Let R G C be artinian. For any two Ox-modules M' and M" over 
R let 

E x t 0 x ^ ( M , , , M / ) 

denote the Ox-module of extension classes of M" by M' constructed above. 

Recall that we view the category of divisible Ox-modules on artinian R as a ful] 
sub-category of the category of all Ox-modules. 
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Lemma 1.8 (compare [Mes, 1.2.4.3]). — Let R G C be artinian. Given an extension 
of the form 

hr i F v 
(K/OK)R 

of OK-modules over R, then F is a divisible OK-'module such that F° = HR and 
F/F° ^ (K/OK)R- If one uses the isomorphism r: G ^> H0 x (KfOK)k then F 
becomes a deformation of G to R. This association yields a functor between the 
groupoid of extensions of (K/OK)R by HR and the groupoid of deformations of G to 
R. 

Proof — Since (K/OK)R is totally disconnected and HR is connected it follows that 
i: HR ^ F°. The snake lemma implies that p induces an isomorphism p': F/F° —* 
(K/OK)R- It follows that F is divisible. Since HR(k) = { 0 } the extension HR ^ 
F - » (K/OK)R yields an injective map F(k) ^ (K/0K)R(k) = K/0K- Since k 
is algebraically closed it is an isomorphism. This isomorphism gives us a canonical 
splitting map (K/OK)k c—» F (g) k. Thus the extension is canonically split over k. 
Together with the identification r: G ^ H0 x [KjO^k we get an isomorphism 
ip: F 0 k ^ G such that the pair (F, ip) is a deformation of G. One checks that 
it is functorial. • 

Proposition 1.9 (compare [Mes, appendix Prop.2.1]). — Assume R G C to be ar-
tinian. Then the functor of the preceding lemma is an equivalence of groupoids and 
there is a natural isomorphism 

eR: VG{R) = ExtOKA(K/OK)R,HR). 

Proof. — fully faithful: It is enough to see that every object in either groupoid has a 
trivial automorphism group. For deformations, this was noted above. For extensions, 
recall that the automorphism group is isomorphic to YiovaoK,R((K/®K)R, HR) = { 0 } . 

essentially surjective: Let F be a deformation of G to R. We need to define 
homomorphisms i: HR ^ F and p: F - » (K/OK)R such that p o i = 0. For this we 
let p on R-valued points be defined as follows : 

F(R)- F(k) = F®k(k) 
roip 

Ho(k) x (K/0K)k(k) 
pr2 

K/0K = (K/OK)R(R). 

Since K/OK is discrete the kernel of p equals F°. Because R is artinian local it follows 
that F° 0 k = (F 0 fc)° = G° ^ H0. Since HR is the unique lift of H0 to R it follows 
that F° is isomorphic to HR and we get the map i: HR = F° ^ F. This proves the 
first assertion. The second follows by passage to isomorphism classes. • 

To calculate the Ext-group, we use 

Proposition 1.10. — For any artinian R G C the connecting homomorphism associated 
to the sequence OK ^ K — » K/OK is an isomorphism 

6R: H(R) = HomOKAOK,HR) = ExtOK,R((K/0K)R,HR). 
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