7. FORMAL MODULI OF FORMAL \mathcal{O}_K -MODULES

by

Eva Viehmann & Konstantin Ziegler

Abstract. — We define formal \mathcal{O}_K -modules and their heights, following Drinfeld. To describe their universal deformations we introduce a formal cohomology group.

Résumé (Espaces de modules formels de \mathcal{O}_K -modules formels). — On définit les \mathcal{O}_K -modules formels et leurs hauteurs, suivant Drinfeld. Pour décrire leurs déformations universelles, on introduit un groupe de cohomologie formelle.

Notation. — Except in the proof of Lemma 2.1, all constant coefficients of power series are assumed to be 0.

Acknowledgements. — During the preparation of Section 3 we profited from the talk given by S. Wewers in the ARGOS seminar. We thank I. Vollaard and W. Kroworsch for helpful comments on a preliminary version.

1. Formal modules

Let A, R be commutative rings with 1 and $i: A \to R$ a homomorphism. We also write a instead of i(a) for the image of a under i.

Definition 1.1

- 1. A formal A-module over R is a commutative formal group law $F(X,Y) = X + Y + \cdots \in R[[X,Y]]$ together with a ring homomorphism $\gamma: A \to \operatorname{End}_R(F)$ such that the induced map $A \to \operatorname{End}_R(\operatorname{Lie} F) \cong R$ is equal to the structure map i.
- 2. For $a \in A$ we write $\gamma(a)(X) = [a]_F(X) = aX + \cdots \in R[[X]]$ for the corresponding endomorphism of F. We will also use the notation $X +_F Y$ instead of F(X,Y).

²⁰⁰⁰ Mathematics Subject Classification. — 14L05, 14B12, 13D10, 14K15. Key words and phrases. — Formal module, formal group, universal deformation.

3. A homomorphism of formal A-modules over R is a homomorphism $\varphi(X)$: $F(X,Y) \to G(X,Y)$ of formal group laws F(X,Y), G(X,Y) over R such that $\varphi \circ \gamma_F(a) = \gamma_G(a) \circ \varphi$ for all $a \in A$. Denote by $\operatorname{Hom}_R(F,G)$ the set of homomorphisms from F to G.

Definition 1.2. — For $r \ge 2$ let $\nu_r = p$, if r is a power of a prime p, and $\nu_r = 1$ else. Denote by

$$C_r(X,Y) = \frac{1}{\nu_r}((X+Y)^r - X^r - Y^r)$$

the modified binomial form of degree r.

Consider the functor which assigns to every A-Algebra R the set of formal A-modules over R. It is represented by an algebra Λ_A which is generated by the indeterminate coefficients of the series F and $\gamma(a)$ and whose relations are those which are required by the condition that (F,γ) is a formal module. It has a natural grading: the degree of a coefficient is one less than the degree of the corresponding monomial in X,Y. It is induced by the action of \mathbb{G}_m on $\mathrm{Spf}(A[[t]])$. From this description (or by an elementary calculation) one sees that the grading is compatible with concatenation of power series. The elements of the form ab with $\deg a, \deg b \geq 1$ generate a homogeneous ideal. Let $\tilde{\Lambda}_A$ be the quotient with induced grading $\tilde{\Lambda}_A = \bigoplus \tilde{\Lambda}_A^n$.

Denote by $\mathbb{G}_{a,R}$ the additive formal group law over R. With the canonical R-action $\gamma(a) = aX$, it becomes an R-module over R.

Lemma 1.3. — If A is an infinite field, then for each formal A-module over A there exists a unique isomorphism with $\mathbb{G}_{a,A}$ whose derivative at zero equals 1. In this case there is a canonical isomorphism $\Lambda_A \cong A[c_1, c_2, \ldots]$ as graded algebras where $\deg c_i = i$.

To prove this lemma, one explicitly computes the desired isomorphism, compare $[\mathbf{D}, \text{ Prop. } 1.2]$. The c_i correspond to the coefficients of a homomorphism to the additive formal group law together with the standard A-module structure.

From now on let K be a complete discretely valued field with finite residue field \mathbb{F}_q , where $q = p^l$ for some prime p. Denote by \mathcal{O}_K the ring of integers of K. Let π be a uniformizer.

Theorem 1.4. — $\Lambda_{\mathcal{O}_K}$ and $\mathcal{O}_K[g_1, g_2, \dots]$ are non-canonically isomorphic as graded algebras where $\deg g_i = i$.

Proof. — First we show that $\tilde{\Lambda}_{\mathcal{O}_K}^{n-1} \cong \mathcal{O}_K$ as \mathcal{O}_K -modules for all $n \geq 2$. For each i let F_i and $[a]_i$ denote the polynomials of degree i obtained from the universal formal module by leaving out all summands of higher degree. We write

$$F_n(X,Y) = F_{n-1}(X,Y) + \sum_{i=1}^{n-1} c_i X^i Y^{n-i}$$

and

$$[a]_n = [a]_{n-1} + h(a)X^n$$
.

Then the c_i and h(a) generate $\tilde{\Lambda}_{\mathcal{O}_K}^{n-1}$. As F is a formal group law, we obtain $\sum_{i=1}^{n-1} c_i X^i Y^{n-i} = \alpha C_n(X,Y)$ (compare [H, Lemma 1.6.6]). Note that we need here that we consider elements in $\tilde{\Lambda}_{\mathcal{O}_K}$ and not in $\Lambda_{\mathcal{O}_K}$ itself. In particular, $\tilde{\Lambda}_{\mathcal{O}_K}^{n-1}$ is generated by α and h(a). The condition that $\gamma: \mathcal{O}_K \to \operatorname{End}(F)$ is a homomorphism implies that modulo $(X,Y)^{n+1}$ we have

$$[ab]_{n-1}(X) + h(ab)X^n = [a]_{n-1}([b]_{n-1}(X) + h(b)X^n) + h(a)(bX)^n,$$

$$F_{n-1}([a]_{n-1}(X) + h(a)X^n, [b]_{n-1}(X) + h(b)X^n) + \alpha C_n(aX, bX)$$

= $[a + b]_{n-1}(X) + h(a + b)X^n,$

and

$$[a]_{n-1}(F_{n-1}(X,Y) + \alpha C_n(X,Y)) + h(a)(X+Y)^n$$

= $F_{n-1}([a]_{n-1}(X) + h(a)X^n, [a]_{n-1}(Y) + h(a)Y^n) + \alpha C_n(aX,aY).$

In $\tilde{\Lambda}_{\mathcal{O}_K}^{n-1}$ this leads to the relations

$$(1.1) ah(b) + b^n h(a) = h(ab)$$

$$(1.2) h(a+b) - h(a) - h(b) = \alpha C_n(a,b)$$

(1.3)
$$(a^n - a)\alpha = \begin{cases} h(a) & \text{if } n \text{ is not a power of a prime} \\ h(a)p' & \text{if } n = p'^l, \end{cases}$$

and these are all relations between the generators α , h(a) of $\tilde{\Lambda}_{\mathcal{O}_K}^{n-1}$. If n is invertible in \mathcal{O}_K , then (1.3) shows that each h(a) is a multiple of α . If n is a power of p (where $q=p^l$) but not of q itself, then there exists an $a\in\mathcal{O}_K$ with $a^n-a\notin(\pi)$. From (1.1) we obtain $(a^n-a)h(b)=(b^n-b)h(a)$, thus h(b) is a multiple of h(a). Finally (1.2) shows that α is also a multiple of h(a). Now let n be a power of q. By choosing $h(a)\mapsto(a^n-a)/\pi$ and $\alpha\mapsto p/\pi$ we define an epimorphism of \mathcal{O}_K -modules $\tilde{\Lambda}_{\mathcal{O}_K}^{n-1}\to\mathcal{O}_K$. It is well defined as (1.1)-(1.3) are the only relations of $\tilde{\Lambda}_{\mathcal{O}_K}^{n-1}$. It remains to prove that $\tilde{\Lambda}_{\mathcal{O}_K}^{n-1}$ is generated by $h(\pi)$. Let $M=\tilde{\Lambda}_{\mathcal{O}_K}^{n-1}/(h(\pi))$, and denote by $\overline{x}\in M$ the image of $x\in\tilde{\Lambda}_{\mathcal{O}_K}^{n-1}$. Then (1.1) shows that $\pi\overline{h(b)}=\overline{h(\pi b)}=\pi^n\overline{h(b)}$, thus $\overline{h(\pi b)}=0$ for all $b\in\mathcal{O}_K$. Besides, (1.3) shows $(\pi^n-\pi)\overline{\alpha}=\overline{h(\pi)p}=0$, hence $\pi\overline{\alpha}=0$, and M is an \mathbb{F}_q -vector space. As n is a power of q, (1.1) reduces to $a\overline{h(b)}+b\overline{h(a)}=\overline{h(ab)}$. This shows

$$\overline{h(a)} = \overline{h(a^n)} = n\overline{a^{n-1}h(a)} = 0$$

for all a. Then (1.2) implies that $C_n(a,b)\overline{\alpha}=0$ for all $a,b\in\mathbb{F}_q$. By [**H**, Lemma 21.3.2], there is an $x\in\mathbb{F}_p$ with $C_n(x,1)\neq 0$ in \mathbb{F}_p . Thus $\overline{\alpha}=0$ and M=0. Hence in all cases $\tilde{\Lambda}^{n-1}_{\mathcal{O}_K}\cong\mathcal{O}_K$, and we have an epimorphism of graded algebras

Hence in all cases $\tilde{\Lambda}_{\mathcal{O}_K}^{n-1} \cong \mathcal{O}_K$, and we have an epimorphism of graded algebras $\mathcal{O}_K[g_1,g_2,\dots] \to \Lambda_{\mathcal{O}_K}$. Here g_i is a lift of a generator of $\tilde{\Lambda}_{\mathcal{O}_K}^i$. The construction of the isomorphism $\Lambda_K \cong K[c_1,c_2,\dots]$ in Lemma 1.3 implies that the canonical morphism $\Lambda_{\mathcal{O}_K} \otimes K \to K[c_1,c_2,\dots]$ which is compatible with the grading is also surjective. Comparing dimensions one sees that the epimorphism $\mathcal{O}_K[g_1,g_2,\dots] \to \Lambda_{\mathcal{O}_K}$ is an isomorphism.

2. Heights

Let \mathcal{O}_K be as above and let R be a local \mathcal{O}_K -algebra of characteristic p with residue field k.

Lemma 2.1. — Let F, G be formal \mathcal{O}_K -modules over R and let $\alpha \in \operatorname{Hom}_R(F, G) \setminus \{0\}$. Then there is a unique integer $h = \operatorname{ht}(\alpha) \geq 0$ and $\beta \in R[[X]]$ with $\alpha(X) = \beta(X^{q^h})$ and $\beta'(0) \neq 0$. The integer h is called the height $\operatorname{ht}(\alpha)$ of α .

This lemma is analogous to the corresponding result over a field, compare [H, 18.3.1]. For $\alpha = 0$ we set $ht(\alpha) = \infty$.

Proof. — We first show that $\alpha(X) = \beta(X^{p^n})$ for some β with $\beta'(0) \neq 0$. To do this we assume $\alpha(X) \neq 0$ with $(\partial \alpha/\partial X)(0) = 0$ and show that $\alpha(X) = \beta(X^p)$ for some homomorphism β of (not necessarily the same) formal group laws. The claim then follows by induction.

Partial differentiation of $\alpha(F(X,Y)) = G(\alpha(X),\alpha(Y))$ with respect to Y gives

$$\frac{\partial \alpha}{\partial X}(F(X,Y))\frac{\partial F}{\partial Y}(X,Y) = \frac{\partial G}{\partial Y}(\alpha(X),\alpha(Y))\frac{\partial \alpha}{\partial X}(Y).$$

Substituting Y = 0 and using $(\partial \alpha / \partial X)(0) = 0$ we obtain

$$\frac{\partial \alpha}{\partial X}(X)\frac{\partial F}{\partial Y}(X,0) = 0.$$

As $(\partial F/\partial Y)(X,0) = 1 + a_1X + \cdots \in R[[X]]^{\times}$, we obtain $\frac{\partial \alpha}{\partial X}(X) = 0$. Hence $\alpha(X) = \beta(X^p)$ for some $\beta \in R[[X]]$. Let σ_*F be the formal group law obtained from F by raising each coefficient to the pth power. Then an easy calculation shows that β is a homomorphism from σ_*F to G.

We now have to show that p^n is a power of q. Let $a \in \mathcal{O}_K$. Then

$$[a]_G(\alpha(X)) = \alpha([a]_F(X)) = \beta'(0)i(a)^{p^n}X^{p^n} + \cdots$$

and on the other hand

$$[a]_G(\alpha(X)) = \beta'(0)i(a)X^{p^n} + \cdots$$

This implies $\beta'(0)(i(a)-i(a^{p^n}))=0$ with $\beta'(0)\neq 0$, hence $i(a)-i(a^{p^n})=i(a-a^{p^n})$ maps to 0 in k. Thus $a^{p^n}=a$ for all $a\in \mathbb{F}_q$ and p^n is a power of q.

Definition 2.2. — The height of a formal \mathcal{O}_K -module F over R is

$$ht(F) = \begin{cases} h & \text{if } [\pi]_F \text{ has height } h \\ \infty & \text{if } [\pi]_F = 0. \end{cases}$$

Remark 2.3. — This definition is different from the definition of height of a formal module given in [H], where it is defined as the height of the reduction of the module over the residue field.

Lemma 2.4. — Let R be as above and let (F, γ_F) be the formal \mathcal{O}_K -module corresponding to a homomorphism $\varphi : \Lambda_{\mathcal{O}_K} \to R$. Then $\operatorname{ht}(F) = \min\{i | \varphi(g_{q^i-1}) \neq 0\}$.

Proof. — In the proof of Theorem 1.4 we identified the generator g_{q^i-1} of $\tilde{\Lambda}_{\mathcal{O}_K}^{q^i-1}$ with the coefficient of X^{q^i} of $[\pi](X)$.

The following lemma reduces the examination of formal modules over fields and of their deformations to formal modules of an especially simple form. For a proof see $[\mathbf{D}$, Prop. 1.7].

Lemma 2.5. — Let (F, γ) be a formal \mathcal{O}_K -module of height $h < \infty$ over a separably closed field k of characteristic p > 0. Then F is isomorphic to a formal module (F', γ') over k with

$$F'(X,Y) \equiv X + Y \pmod{\deg q^h},$$

$$[a]_{F'}(X) \equiv aX \pmod{\deg q^h},$$

$$[\pi]_{F'}(X) = X^{q^h}.$$

Such modules are called normal modules.

Fix an integer h > 1 and let F_0 be a formal \mathcal{O}_K -module of height h over k. Assume that R is a local artinian \mathcal{O}_K -algebra with maximal ideal \mathfrak{m} and residue field k. Let $I \triangleleft R$ be an ideal. We set $\overline{R} = R/I$. If F is a lift of F_0 over R, we set $\overline{F} := F \otimes_R \overline{R}$.

Lemma 2.6. — Let F, G be lifts of F_0 over R. Then the reduction map

(2.1)
$$\operatorname{Hom}_{R}(F,G) \to \operatorname{Hom}_{\overline{R}}(\overline{F},\overline{G})$$

is injective.

Proof. — The reduction map in (2.1) is the composition of finitely many maps

$$\operatorname{Hom}_{R_{n+1}}(F \otimes R_{n+1}, G \otimes R_{n+1}) \to \operatorname{Hom}_{R_n}(F \otimes R_n, G \otimes R_n),$$

where $R_n = R/I_n$ with $I_n = I \cap \mathfrak{m}^n$. We may therefore assume that $\mathfrak{m} \cdot I = 0$. Then I is a finite dimensional k-vector space, and we have $I^2 = 0$. Let $\alpha(X) = a_1 X + a_2 X^2 + \dots$ be a homomorphism from F to G such that $\alpha(X) \equiv 0 \pmod{I}$. We get

$$\alpha([\pi]_F(X)) = [\pi]_G(\alpha(X)) = 0.$$

Since $\operatorname{ht}(F_0) < \infty$, we have $[\pi]_F(X) \neq 0 \pmod{\mathfrak{m}}$, thus $\alpha = 0$ which proves the lemma.

From now on we may consider $\operatorname{Hom}_R(F,G)$ as a subset of $\operatorname{Hom}_{\overline{R}}(\overline{F},\overline{G})$.

3. Deformations of modules, formal cohomology

Let F be a formal \mathcal{O}_K -module of height $h < \infty$ over k, and let M be a finite dimensional k-vector space. A symmetric 2-cocycle of F with coefficients in M is a