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13. D E F O R M A T I O N S O F I S O G E N I E S O F F O R M A L G R O U P S 

by 

Michael Rapoport 

Abstract. — Let (f1 , F 2 , F 3 ) : E —»• E' be a triple of isogenies between supersingular 
elliptic curves over Fp. We determine when the locus of deformation of ( f 1 , F 2 , F 3 ) 
inside the universal deformation space of (E, E') is an Artin scheme, and in this case 
we give a formula for its length. These results are due to Gross and Keating. 

Résumé (Déformations d'isogénies de groupes formels). — Soit (F1 , F2, F3) : E —> E' un 
triplet d'isogénies entre des courbes elliptiques supersingulières sur FP. Nous donnons 
un critère pour le lieu de déformation de ( f i , F 2 , F 3 ) dans l'espace de déformations 
universel de (E,E') d'être un schéma artinien, et nous donnons dans ce cas une 
formule pour sa longueur. Ces résultats sont dûs à Gross et Keating. 

Let A and A' be abelian varieties of the same dimension n over Fp. The universal 
deformation space M of the pair A, A' is the formal spectrum of a power series ring in 
2n2 variables over W(Fp). Given an isogeny f : A —» A' one may pose the problem of 
determining the maximal locus inside M, where f can be deformed. More generally, 
given an r-tuple f1,..., fr of isogenies from A to A', one may ask for the maximal 
locus inside M where f 1 , . . . , fr deform. And, one may ask when this maximal locus 
is the spectrum of a local Artin ring, and if so, to give a formula for its length. 

These questions are very difficult and it even seems likely that no systematic an-
swers exist in general. In this chapter we consider the case n = 1, i.e., when A and A' 

are elliptic curves. More precisely, we present the solution due to Gross and Keating 
[GK] to this problem when A and A' are supersingular elliptic curves. Their proof 
is a clever application of results on quasi-canonical liftings and their endomorphisms. 
Unfortunately, some parts of their proof are not so easy to implement in the case 
p = 2, which requires special attention. In fact, I only managed to deal with the case 
p = 2 by making use of the classification of quadratic forms over Z2, comp. [B], and 
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using a case-by-case analysis. Fortunately, S. Wewers afterwards found a uniform ar-
gument for this part of the proof which makes use of deeper properties of anisotropic 
quadratic forms over Z2. This proof is presented in the next chapter. We decided to 
present both proofs because the more pedestrian approach here gives insight into the 
subtleties of the Gross-Keating invariants in the case p = 2. 

Let us comment on the general problem above in another example, the case of 
ordinary elliptic curves, comp. [Me2]. The case when A and A! are ordinary elliptic 
curves has been known for a long time and is part of the Serre-Tate theory of canonical 
coordinates, comp. [Mes, Appendix]. Let A and A' be ordinary elliptic curves and 
fix isomorphisms 

A[p°°r - Qp/Zp, A ' [ p ° T - QP/ZP, 

which then induce, via the canonical principal polarization, isomorphisms 

A[p°°}0 = Gm, Ä\p°°}° = Gm. 

The isogeny / : A —» Af determines 

(20,21) ^ %l 

where / is given by multiplication by z\ on the et ale part and by multiplication by 
ZQ on the connected part of A(poo) On the other hand, we have 

M = Spf W{Wp)lt,t'i 

(Serre-Tate canonical coordinates). Then setting q — 1 + £, q' — 1 + £', the locus inside 
A4 where / deforms is defined by the equation 

qZl = qZ(\ 

cf. [Mes, Appendix, 3.3], comp, also [Me2, Example 2.3]. On the other hand, it is 
easy to see that, for any r-tuple of isogenies / 1 , . . . , / r : A —» A'', the locus where 
/ 1 , . . . , / r deform is never of finite length, comp. [Go2, proof of Prop. 3.2]. These 
remarks show that already the case n = 1 in the above-mentioned general problem 
defies a uniform solution. 

I wish to thank I. Bouw, U. Görtz, Ch. Kaiser, S. Kudla, S. Wewers and Th. Zink 
for their help in the preparation of this manuscript, and the referee for his remarks. 

1. Statement of the result 

Let E and E' be supersingular elliptic curves over ¥p. Denoting by W the ring of 
Witt vectors of Fp, the ring 

R = w[[tJ}] 
is the universal deformation ring of the pair E,E'. Let E,E; be the universal de-
formation of E,E' over R. Let / i , / 2 , / 3 • E —• E' be a triple of isogenies. The 
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locus inside Spf R to which / 1 , / 2 , / 3 deform is a closed formal subscheme. Let 

I = minimal ideal in R such that / 1 , / 2 , / 3 : E —> E' lift to isogenies E — > E ' (mod I). 

The problem in this chapter is: Determine 

a ( / i , / 2 ) / 3 ) = l g w f i / J 

(in particular, determine when this length is finite). 

This problem reduces to a problem on formal groups, as follows. Let T = E resp. 

V = E' be the formal group over R corresponding to E resp. E'. By the Serre-Tate 

theorem we have 

1 = minimal ideal in R such t h a t / 1 , / 2 , / 3 : E—>& lift to isogenies L—>T' (mod / ) . 

Now E and E' can both be identified with the formal group G of dimension 1 and 

height 2 over ¥p (which is unique up to isomorphism). In this way / 1 , / 2 , / 3 become 

non-zero elements of End(G) = OD- Here D denotes the quaternion division algebra 

over QP. 

On Hom(^,E/) we have the quadratic form induced by the canonical principal 

polarization, 

<?(/) = 7 ° / = deg/ . 

This Z-valued quadratic form is induced by the Z„-valued quadratic form 

Q(x) — x • Lx 

under the inclusion Hom(E, E') C End(G). Here x ^ Lx denotes the main involution 

on D characterized by (reduced trace) 

tr(x) = x + Lx . 

We also write Q(x) = Nm(x) (reduced norm). 

Let L — Zp/i + Zp /2 + ^p/3 be the Zp-submodule of OD, with the quadratic form 
Q obtained by restriction. Then 

/ = minimal ideal in R such that L C Hornby/(T, V). 

Assume that (L, Q) is non-degenerate, i.e., L is of rank 3. Then to (L, Q) are associ-

ated integers 0 < ai < a2 < ^ 3 , the Gross-Keating invariants. Recall ([B, section 2]) 

that if p ^ 2 these invariants are characterized by the fact that in a suitable basis 

ci, 62, e3 of L the matrix T = 1 
2 1 (eiiej))i,j is equal to 

(1.1) T = ciicig(u1pai,U2pa2,u3pa3) with uuu2,u3 e Z*. 

Here (x, y) — Q(x + y) — Q(x) — Q(y) is the bilinear form associated to the quadratic 

form Q. 
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Theorem 1.1. — The length of R/I is finite if and only if (L, Q) is non-degenerate. 
In this case, \gwR/I only depends on the Gross-Keating invariants (ai, 0/2,0,3) and 
equals a(Q) where 

a(Q) = 
a i - l 

i=0 
(i + l)(ai + a2 + a3 - 3i)pl + 

( a i + a 2 - 2 ) / 2 

2 = a i 

(ai + l)(2ai + a2 + a3 - Ai)pl 

ai + 1 
2 

> 3 - a2 + l)p(fll+a2)/ , z/ai = a2 (mod 2) 

a(Q) = 
a i - l 

z=0 

?/ ai ^ a2 (mod 2) 

(z + l)(ai + a2 + a3 - 3i)p' + 
( a i + a 2 - l ) / 2 

z = a i 

(ai + l ) ( 2 a i + a 2 + a3-4z)pl , 

Remark 1.2. — Recall from [B, Lemma 5.3] that, since (L,Q) is anisotropic, not all 
ai, a2, <23 have the same parity. Hence the RHS of the formulas above is an integer in 
all cases. 

Remark 1.3. — The formulas above imply that the length of R/I only depends on 
the isomorphism class of the quadratic module L. This can be seen in an a priori way 
as follows. 

First of all, there is an action of (Dx)2 on the universal deformation ring R, given 
by changing the identification of the special fibers of r , r ' with G, G by a pair of 
automorphisms of G. More precisely, an element d G Dx defines a quasi-isogeny 
of G, as the composition Frob-7' o d. Here Frob denotes the Frobenius endomorphism 
and v = v(d) is the valuation of d. Since this is a quasi-isogeny of height 0, it is an 
automorphism of G. Note however, that this is only a semi-linear automorphism, and 
therefore also the induced automorphism by (<ii, ¿¿2) G (Dx)2 on R is only semi-linear. 

It follows that for ((¿1,^2) G (Dx)2 with v(d\) = i;(<i2), the length of the deforma-
tion ring R/I for L = Zp/i + Z p / 2 + Z p / 3 is equal to the length of the deformation ring 
R/I' for L' = Zpf[ + Z p / 2 + ^ / 3 ^ where /2' = difd^1. Hence it suffices to show that 
for any two isometric ternary lattices L and L' in Op, there exists (<ii,<i2) G (Dx)2 
with i>(<ii) = 17(^2) and iv7 = diLd^1. 

Fix a nondegenerate ternary form Q over Zp. We want to show that for any two 
isometries a,a' from Q to OD , there exists (¿¿1,^2) G (Dx)2 as above with Lr = 
diLd^1, where L resp. L; denotes the image of a, resp. a'. By [ W d l , Lemma 1.6], 
we may identify SO(D,Nm) with the group 

{(di,da) e (Dx)2 I Nm(d!) = Nm(d2)}/Qpx. 

By [ W d 2 , 1.3], the group SO(D, Nm) acts simply transitively on the set of isometries 
cr, hence there exists a unique (<ii,<i2) G SO(D,Nm) with a' — dicrd^1. The pair 
(<ii,<i2) has the required properties. 

To start the proof of Theorem 1.1, we first recall the following proposition. 
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Proposition 1.4. — Let ifj G End(G) be an isogeny, i.e., ip = 0. Let J be the minimal 
ideal in R = W p , £']] such that ip lifts to an isogeny T —» T' (mod J). T/zen £/ie closed 
formal subscheme T of S — Spf R is a relative divisor over Spf W. In other words, 
J is generated by an element which is neither a unit nor divisible by p. 

Proof. — This is the special case of [ W w l , Prop. 5.1], where (in the notation used 
there) K = QP. A different proof that T is a divisor is (at least implicitly) contained 
in [Z, section 2.5]. • 

Let us prove the first statement of Theorem 1.1. If (L,Q) is degenerate, then 
L is generated by two elements. Hence the deformation locus is by Proposition 1.4 
the intersection of two divisors on a regular 3-dimensional formal scheme and there-
fore cannot be of finite length. Now assume that (L, Q) is non-degenerate. Now 
Hom(£', Er) (8) Zp = End(G), so we find isogenies / i , / 2 , / 3 • E —» E' with Zp-span 
equal to L. Let T = Spec VK[[t, £']]/J. Then / i , / 2 , / 3 deform to isogenies from E^ to 
E^. Hence at any point t of T we have rg Hom(E^,Ej) > 2, hence the elliptic curves 
Et and E't are supersingular. Since supersingular points are isolated in the moduli 
scheme, it follows that T is an Artin scheme, as was to be shown. 

From now on we assume that (L, Q) is non-degenerate. Let ipi,ip2, ^ 3 be an optimal 
basis of L. If p ^ 2, this means that the matrix of the bilinear form Q in terms of 
this basis is diagonal as in (1.1). 

Corollary 1.5. — Let % c S be the locus, defined by the ideal Ii in R, where ipi lifts 
to an isogeny T —> T^mod IA. Then 

\gw R/I = (7Ï • T2 • %)s • 

Here on the RHS there appears the intersection product of divisors on a regular 
scheme, defined by the Samuel multiplicity or via the Koszul complex of the equations 
9i of 

X ( ( # l , # 2 , # 3 ) ) = (-iyig(Ht(K.(gi,g2,g3))) 

(comp. [F, Ex. 7.1.2]). 

Proof. — By our non-degeneracy assumption, the gi form a regular sequence in a 
regular local ring. • 

The corollary allows us to apply the intersection calculus of divisors on a regular 
scheme. In particular, the RHS is multilinear in all three entries. 

Theorem 1.1 will be proved by induction on a\ + a2 + 0,3. It will follow from the 
following three propositions. 

Proposition 1.6. — Let a3 < 1. Then 

a(Q) = 
1 a2 = 0 

2 02 = 1. 

Hence Theorem 1.1 holds true in this case. 
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