14. AN ALTERNATIVE APPROACH USING IDEAL BASES

by

Stefan Wewers

Abstract. — We give another approach to the proof of the Gross-Keating intersection formula. This approach is based on the concept of *ideal bases* in the theory of anisotropic quadratic forms over \mathbb{Z}_p , and in the case p=2 is drastically simpler than

Résumé (Une approche alternative à l'aide des bases idéales). — On donne une autre approche à la démonstration de la formule de Gross et Keating. Cette approche est basée sur la notion de bases idéales de la théorie des formes quadratiques anisotropes sur \mathbb{Z}_p , et est plus simple que la démonstration dans le chapitre précédent pour p=2.

In this note we give an alternative proof of Proposition 1.5 and Proposition 1.6 of $[\mathbf{R}]$. This proof uses the concept of *ideal bases* introduced in Section 6 of $[\mathbf{B}]$ and thus avoids the difficulties encountered in the case p=2. In fact, our arguments work the same way for any p.

1. Homomorphisms between quasi-canonical lifts

1.1. Let p be a prime number and D the quaternion division algebra over \mathbb{Q}_p . The reduced norm gives an anisotropic \mathbb{Q}_p -valued quadratic form on D which we denote by Q. The function $v: D^{\times} \to \mathbb{Z}$, $\alpha \mapsto \operatorname{ord}_p Q(\alpha)$, is the standard normalized valuation on D.

Let $\psi = (\psi_1, \dots, \psi_n)$ be an ordered tuple of linearly independent elements of D, and let $L \subset D$ be the \mathbb{Z}_p -lattice spanned by ψ . The restriction of Q to L gives L the structure of an anisotropic quadratic \mathbb{Z}_p -module. We say that ψ is an *ideal basis* of L if

$$v(\psi_i) \le v(\psi_j)$$
 for all $i \le j$

the proof given in the previous chapter.

²⁰⁰⁰ Mathematics Subject Classification. — 14L05, 11F32.

Key words and phrases. — Formal O-modules, quaternion algebras, modular intersection numbers.

172 S. WEWERS

and if

$$v\left(\sum_{i} x_{i} \psi_{i}\right) = \min_{i} v(x_{i} \psi_{i})$$

for all $(x_i) \in \mathbb{Z}_p^n$. By [**B**], Lemma 6.4, this is equivalent to Definition 6.3 of *loc. cit.*. In particular, every sublattice $L \subset D$ has an ideal basis.

By [B, Proposition 6.6], an ideal basis is also optimal. Moreover, if ψ is ideal then the numbers $a_i := v(\psi_i), i = 1, ..., n$, are the Gross-Keating invariants of L.

1.2. Let $K \subset D$ be a subfield which is a quadratic extension of \mathbb{Q}_p . Then there exists an element $\varphi \in K$ such that

$$\mathcal{O}_K = \mathbb{Z}_p \oplus \mathbb{Z}_p \cdot \varphi$$

and such that φ is a unit (resp. a uniformizer) if K/\mathbb{Q}_p is unramified (resp. if K/\mathbb{Q}_p is ramified). For such an element, we have

(1.1)
$$v(x + y\varphi) = \min\{2 \operatorname{ord}_p x, 2 \operatorname{ord}_p y + v(\varphi)\},\$$

for all $x, y \in \mathbb{Q}_p$. It follows that $(1, p^r \varphi)$ is an ideal basis of

$$\mathcal{O}_r = \mathbb{Z}_p \oplus \mathbb{Z}_p \cdot p^r \varphi,$$

the unique order in \mathcal{O}_K of conductor p^r , for all $r \geq 0$.

1.3. Let G be the unique formal group of height 2 over $k = \overline{\mathbb{F}}_p$. We identify the ring of endomorphisms of G with the maximal order \mathcal{O}_D of D. Note that for $\psi \in \mathcal{O}_D$ the integer $v(\psi)$ is equal to the *height* of the isogeny $\psi : G \to G$.

Fix two positive integers $r, s \geq 0$, and let F_r, F_s be quasi-canonical lifts of G of level r and s, with respect to the subfield $K \subset D$. We assume that F_r, F_s are defined over A, a complete discrete valuation ring which is a finite extension of the ring of Witt vectors over k. We denote by

$$H_{r,s} := \operatorname{Hom}_A(F_r, F_s)$$

the group of homomorphisms of formal groups $F_r \to F_s$. This is a free \mathbb{Z}_p -module of rank 2. It is also a right (resp. left) module under the order $\mathcal{O}_r = \operatorname{End}(F_r)$ (resp. the order $\mathcal{O}_s = \operatorname{End}(F_s)$).

Reducing a homomorphism $F_r \to F_s$ to the special fibre yields a \mathbb{Z}_p -linear embedding $H_{r,s} \hookrightarrow D$. Via this embedding we may consider $H_{r,s}$ as a quadratic \mathbb{Z}_p -module.

Proposition 1.1

- 1. As a right \mathcal{O}_r -module, $H_{r,s}$ is free of rank 1, generated by a homomorphism $\psi_1: F_r \to F_s$ of height |s-r|.
- 2. The Gross-Keating invariants of $H_{r,s}$ are (|s-r|, r+s) if K/\mathbb{Q}_p is unramified and (|s-r|, r+s+1) if K/\mathbb{Q}_p is ramified.

Proof. — Replacing all isogenies by their duals, we may assume that $r \leq s$. Let F/A be the canonical lift of G with respect to the embedding $K \subset D$. By $[\mathbf{Ww1}, \S 4]$, we may identify F_r with the quotient of F corresponding to the superlattice $T_r \supset T := \mathcal{O}_K$ defined by

$$T_r := \mathbb{Z}_p \cdot p^{-r} + \mathcal{O}_K$$

(and similarly for F_s). By [Ww1, Corollary 2.3], this presentation of F_r , F_s yields an isomorphism of right \mathcal{O}_r -modules

$$H_{r,s} \cong \{ \alpha \in \mathcal{O}_K \mid \alpha T_r \subset T_s \}.$$

We let $\psi_1 \in H_{r,s}$ denote the element corresponding to 1 under this isomorphism. Clearly, the height of ψ_1 equals the index of T_r in T_s , which is s-r. To prove Part 1 of the proposition, it remains to show that $\alpha T_r \subset T_s$ if and only if $\alpha \in \mathcal{O}_r$. One direction is clear. For the other direction, fix $\alpha \in \mathcal{O}_K$ with $\alpha T_r \subset T_s$. In order to show that $\alpha \in \mathcal{O}_r$, we may add any element of \mathbb{Z}_p to α . Hence we may assume that $\alpha = x\varphi$, where $x \in \mathbb{Z}_p$ and φ is as in Section 1.2. Our assumption implies that

$$\alpha p^{-r} = x p^{-r} \varphi \in T_s = \mathbb{Z}_p \cdot p^{-s} \oplus \mathbb{Z}_p \cdot \varphi.$$

We conclude that $p^r|x$ and hence $\alpha \in \mathcal{O}_r$. This proves Part 1.

Set $\psi_2 := p^r \varphi \psi_1$. Clearly, (ψ_1, ψ_2) is the basis of $H_{r,s}$ corresponding to the ideal basis $(1, \varphi)$ of \mathcal{O}_r under the isomorphism $\mathcal{O}_r \cong H_{r,s}$. This isomorphism is not an isometry, but for $\psi = \alpha \cdot \psi_1 \in H_{r,s}$, with $\alpha \in \mathcal{O}_r$, we have

$$v(\psi) = v(\alpha) + (s - r).$$

Therefore, it follows from (1.1) that (ψ_1, ψ_2) is an ideal basis of $H_{r,s}$. By the choice of $\varphi \in K$ in Section 1.2, we get $v(\psi_2) = s + r$ (resp. $v(\psi_2) = s + r + 1$) if K/\mathbb{Q}_p is unramified (resp. ramified). This completes the proof of Part 2 of the proposition. \square

1.4. We choose a uniformizer λ of the discrete valuation ring A. For $n \geq 0$ we set $A_n := A/(\lambda^{n+1})$. Let $H_{r,s,n}$ denote the subgroup of \mathcal{O}_D consisting of endomorphisms $\psi: G \to G$ which lift to a homomorphism $F_r \otimes A_n \to F_s \otimes A_n$.

Given an element $\psi \in \mathcal{O}_D - H_{r,s}$, we define two integers,

$$l_{r,s}(\psi) := \max\{v(\psi + \phi) \mid \phi \in H_{r,s}\}$$

and

$$n_{r,s}(\psi) := \max\{m \mid \psi \in H_{r,s,m}\}.$$

We let e denote the absolute ramification index of the discrete valuation ring A.

Proposition 1.2. — There exists a constant $c_{r,s}$, only depending on (r,s), such that the following holds. If $l_{r,s}(\psi) \geq r + s - 1$ then

$$n_{r,s}(\psi) = c_{r,s} + \frac{e}{2} \cdot l_{r,s}(\psi).$$

174 S. WEWERS

(1.2)
$$n_{r,s}(\psi) = a(r-1) + p^{r-1} + \left(\frac{l_{r,s}(\psi) + 1}{2} - r\right)e + 1,$$

where $a(k) = (p^k - 1)(p + 1)/(p - 1)$. Hence the proposition is true for r = s.

For the general case, we may again assume that $r \leq s$. By induction on s, we will reduce to the case r = s. Suppose that the proposition is proved for some pair (r, s) with $r \leq s$. Let F_r , F_s , F_{s+1} be quasi-canonical lifts of level r, s, s+1. We want to prove the proposition for the pair (r, s+1). By Proposition 1.1.1, the group $H_{s,s+1}$ is generated, as a right \mathcal{O}_s -module, by a homomorphism $\beta: F_s \to F_{s+1}$ of height one. Moreover, the map $\psi \mapsto \beta \psi$ is an isomorphism of \mathbb{Z}_p -modules $H_{r,s} \xrightarrow{\sim} H_{r,s+1}$.

Let $\psi \in \mathcal{O}_D - H_{r,s+1}$ with $l_{r,s+1}(\psi) \geq s+r$. In a first step we will assume in addition that either r>0 or that $l_{r,s+1}(\psi) \geq r+s+1$. It is no restriction of generality to assume that $v(\psi) = l_{r,s+1}(\psi)$. Then $v(\psi) > 0$ and we can write $\psi = \beta \psi'$, with $\psi' \in \mathcal{O}_D$. It follows from the assertions made in the preceding paragraph that we have

$$(1.3) l_{r,s+1}(\psi) = l_{r,s}(\psi') + 1.$$

In particular, $l_{r,s}(\psi') \geq r + s$. On the other hand, [Ww1, Corollary 6.3], says that

(1.4)
$$n_{r,s+1}(\psi) = n_{r,s}(\psi') + e/e_{s+1},$$

where we use the following notation. Let $M = K \cdot W[1/p]$, and let \mathcal{O}_M be its ring of integers. By M_s we denote the ring class field of $O_s^{\times} \subset \mathcal{O}_K^{\times}$, by \mathcal{O}_{M_s} its ring of integers, and by e_s its absolute ramification index. Then \mathcal{O}_{M_s} is the minimal subring of A over which F_s can be defined. So for r > 0, the proposition follows from (1.3), (1.4) and induction.

Unfortunately, for r=0 the above argument proves the claim only for the weaker bound $l_{r,s} \geq r+s=s$. The problem is that for s=1 and l=0 the element ψ is a unit in \mathcal{O}_D , and so we cannot divide by β and reduce to the case s=0. However, the argument can be used to compute the value of the constant $c_{r,s}$. For instance, for (r,s)=(0,0) we have $c_{0,0}=e/2$ by (1.2), and so by (1.3) and (1.4) we get $c_{0,1}=e/e_1$. Therefore, the proposition is proved if we can show that for $l_{0,1}(\psi)=0$ we have $n=n_{0,1}(\psi)=e/e_1$.

Since $l_{0,1}(\psi) = 0$, the endomorphism ψ is an automorphism of G. Let F_r^{ψ} denote the lift of G obtained from F_r by composing the isomorphism $F_r \otimes_A k \xrightarrow{\sim} G$ with ψ . Then ψ lifts to a homomorphism $F_r \to F_s$ modulo λ^n if and only if the two deformations $F_r^{\psi} \otimes A/(\lambda^n)$ and $F_s \otimes A/(\lambda^n)$ are isomorphic. This, in turn, means that $u(F_r^{\psi}) \equiv u(F_s) \pmod{\lambda^n}$ (here $u(F) \in A$ denotes the modulus of a lift of G defined over A). By [Ww1, Corollary 5.6], the valuation of $u(F_r^{\psi})$ (resp. of $u(F_s)$) is equal to e/e_r (resp. equal to e/e_s). Since $e_r = e_0 < e_s = e_1$, the maximal value that n can take is e/e_1 . This is what we still had to prove.

2. The modular intersection number

2.1. Let p be an arbitrary prime and $k = \overline{\mathbb{F}}_p$. Let G be the (unique) formal group of height 2 over k. We identify $\operatorname{End}_k(G)$ with the maximal order \mathcal{O}_D of the quaternion division algebra D over \mathbb{Q}_p . Let W = W(k) denote the ring of Witt-vectors over k. Let (Γ, Γ') be the universal deformation of the pair of formal groups (G, G). It is defined over the universal deformation space $\mathcal{S} \cong \operatorname{Spf} W[[t, t']]$.

Let $L \subset \mathcal{O}_D$ be a sub- \mathbb{Z}_p -module of rank 3. We denote by Q the quadratic form induced on L by the reduced norm on \mathcal{O}_D . For $\psi \in L$ we define $v(\psi) := \operatorname{ord}_p Q(\psi)$. Choose an ideal basis (ψ_1, ψ_2, ψ_3) of (L, Q), see Section 1.1. Let $a_i := v(\psi_i)$. The numbers a_1, a_2, a_3 are the Gross-Keating invariants of L.

For i = 1, 2, 3, let \mathcal{T}_i denote the closed subscheme of \mathcal{S} corresponding to the ideal $I \triangleleft W[[t, t']]$ which is minimal for the property that ψ_i lifts to a homomorphism $\Gamma \to \Gamma'$ modulo I. The following proposition corresponds to Proposition 1.5 of $[\mathbf{R}]$.

Proposition 2.1. — If $a_3 \leq 1$ then $a_3 = 1$ and

$$(\mathcal{T}_1 \cdot \mathcal{T}_2 \cdot \mathcal{T}_3)_{\mathcal{S}} = \begin{cases} 1, & \text{for } a_2 = 0, \\ 2, & \text{for } a_2 = 1. \end{cases}$$

Proof. — Since Q is anisotropic, the a_i cannot have all the same parity. Therefore, $a_1 \leq a_2 \leq a_3 \leq 1$ implies $a_0 = 0$ and $a_3 = 1$. In particular, ψ_1 is an automorphism of G. It follows that $\mathcal{T}_1 \cong \operatorname{Spf} W[[t]]$, and that we may identify $\Gamma|_{\mathcal{T}_1}$ with $\Gamma'|_{\mathcal{T}_1}$ via ψ_1 . So for the rest of the proof, we assume that $\psi_1 = 1 \in \mathcal{O}_D$ and consider $\mathcal{T}_2, \mathcal{T}_3$ as closed subschemes of $\mathcal{S}' = \operatorname{Spf} W[[t]]$, the universal deformation space of G. For $i = 2, 3, \mathcal{T}_i$ is defined by the condition that ψ_i lifts to an endomorphism of Γ .

Let $\mathcal{O} = \mathbb{Z}_p[\psi_2] \subset \mathcal{O}_D$ denote the subring generated by ψ_2 . Since $(\psi_1 = 1, \psi_2)$ is an ideal basis of \mathcal{O} , we have

$$a_2 = v(\psi_2) = \max\{v(x + \psi_2) \mid x \in \mathbb{Z}_p\}.$$

If $a_2 = 0$, then it follows that $\mathcal{O} = \mathcal{O}_K$ is the maximal order of $K \subset D$, an unramified quadratic extension of \mathbb{Q}_p . Therefore, $\mathcal{T}_2 \cong \operatorname{Spf} W \subset \mathcal{S}'$ and $F := \Gamma|_{\mathcal{T}_2}$ is the canonical lift corresponding to the subfield $K \subset D$. Moreover, in the notation of §1.4 we have $l = l_{0,0}(\psi_3) = v(\psi_3) = a_3$. It follows from $[\mathbf{Ww1}]$, Theorem 3.3 (see the proof of Proposition 1.2) that $\mathcal{T}_3 \cap \mathcal{T}_2 \subset \mathcal{T}_2$ corresponds to the ideal $(p^n) \triangleleft W$, with

$$n = n_{0,0}(\psi_3) = \frac{l+1}{2}e = \frac{a_3+1}{2} = 1.$$

This proves the proposition for $a_2 = 0$.

If $a_2 = 1$, then $\mathcal{O} = \mathcal{O}_K$ is also the maximal order of K, but K/\mathbb{Q}_p is ramified. With the same arguments as above, it follows that $\mathcal{T}_2 \cong \operatorname{Spf} \mathcal{O}_M \subset \mathcal{S}'$ is the canonical locus corresponding to the subfield $K \subset D$. Applying again $[\mathbf{Ww1}]$, Theorem 3.3, we get

$$n = n_{0,0}(\psi_3) = \frac{l+1}{2}e = a_3 + 1 = 2.$$

This proves the proposition for $a_2 = 1$.