
Astérisque 
312, 2007, p. 67-86 

8. C A N O N I C A L A N D Q U A S I - C A N O N I C A L L I F T I N G S 

by 

Stefan Wewers 

Abstract. — The present note gives a detailed account of the paper of Gross on 
canonical and quasi-canonical liftings. These are liftings of formal O-modules with 
extra endomorphisms, and thus correspond to CM-points in the universal deformation 
space. 

Résumé (Relèvements canoniques et quasi-canoniques). — Nous donnons un exposé dé-
taillé des travaux de Gross sur les relèvements canoniques et quasi-canoniques des 
(O-modules formels, qui correspondent aux points CM dans l'espace de déformations 
universel. 

The present note gives a detailed account of Gross' paper [G] on canonical and 
quasi-canonical liftings. We make heavy use of results of Lubin and Tate [LT2] and 
Drinfeld [D] which are reviewed in [VZ]. All the results presented here have been 
generalized to the case of arbitrary finite height by J. K. Yu [Yu]. 

I thank Eva Viehmann, Inken Vollaard and Michael Rapoport for careful proof-
reading and helpful discussions. 

1. Canonical lifts 

In this section we study canonical lifts of a formal Ok-niodule of height two with 
respect to a quadratic extension L/K. In particular, we prove the first main result 
of [G] which computes the endomorphism ring of the reduction of a canonical lift 
modulo some power of the prime ideal of OK-
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1.1. Throughout this note, K denotes a field which is complete with respect to a 
discrete valuation v, and whose residue class field is finite, with q = pf elements. We 
denote by O x the ring of integers of K. We fix a prime element TT of K, and we 
assume that V(TT) = 1. 

Let i : OK —> R be an Ox-algebra. Recall that a formal OK-module over R 
is given by a commutative formal group law F(X, Y) = X + Y + • • • G R^X, Y}} 
together with a ring homomorphism 7 : OK —> End#(F) such that the induced map 
OK —• End#(LieF) = R is equal to the structure map i. Whenever this is not likely 
to be confusing, we will omit the maps i and 7 from the notation. Given an element 
a G OK, we write [O\F(X) = i(a)X + - • • G R((X)) for the corresponding endomorphism 
of F. 

If Fi, F2 are two formal Ox-modules over R, we write Homfl(Fi, F2) for the 
group of homomorphisms a : F\ —» F2 of formal Ox-modules, i.e., Ox-hnear ho-
momorphisms of formal groups. Similarly, End#(F) denotes the (in general non-
commutative) ring of OxThiear endomorphisms of F. Note that End^(F) is an O x -
algebra. 

1.2. Let k be an algebraic closure of the residue class field of OK- We regard k as 
an Ox-algebra, and write a G k for the image of an element a G Ox-

Let G be a formal Ox-module over k and let a G k ((X)) be an endomorphism of 
G, with a ^ 0. By [VZ, Lemma 2.1], there exists an integer h = ht(a) > 0, called 
the height of a, such that a ( X ) = /^(A9 ), with ^ ' ( 0 ) 7̂  0. It is easy to check that 
the function ht : End^(G) —» Z>o U {00} (we set ht(0) : = 00) is a valuation on the 
Ox-algebra End^(G). We say that the formal Ox-module G has height h, if the 
endomorphism [TT]G has height h. In other words, the restriction of the valuation ht 
via the structure map O x —» Endfc(G) is equal to h~l • v. 

We recall the following fundamental result. 

Theorem 1.1. — For each natural number h, there exists a formal OK-module G over 
k of height h. It is unique up to isomorphism. The ring End^(G) is isomorphic to the 
maximal order OD of a division algebra D of dimension h2 over K, with invariant 
mv(D) = 1/h. 

Proof. — (Compare with [D], Proposition 1.7.) The existence of G follows from 
Lubin-Tate theory, as follows. Let L/K be the unramified extension of degree h. 
Extend the algebra map O x —» k to OL , which gives k the structure of an OL-
algebra. Let F be the Lubin-Tate module of OL with respect to the prime element 7r, 
i.e., the (unique) formal OL-module over OL such that [TT]F = ^X + XQ , see [LT1]. 
By restriction, we may regard F as a formal Ox-module. Then G := F®k is a formal 
Ox-module of height h over k. 

The uniqueness of G is more difficult. See e.g. [H, Theorem 21.9.1]. 
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Let us sketch a proof of the last statement of Theorem 1.1. Set H := End/C(G). 
We may assume that G is the reduction to k of the Lubin Tate module for OL, 
where L/K is unramified of degree h. Since the natural map OL = End(F) —> H is 
injective (see [VZ, Lemma 2.6]), we have OL C H. By construction, the group law 
G(X, Y) = X + Y + . . . and the endomorphisms [O\G(X) = a X + . . . , for a G O ^ , are 
power series with coefficients in ¥q. Moreover, we have [7T]G(^0 = XQ . Hence the 
polynomial II(X) := XQ defines an element II G H with II ^ = TT. One checks that 

n([a]G(X)) = K ] c ( n ( X ) ) , 

where a G Gal(L/K) is the Frobenius. From there, it is easy to see that the subalgebra 
OD •= £*L[n] °f H is the maximal order of a division algebra D of dimension h2 over 
K, with invariant 1/h. It remains to be shown that OD = H. 

Let a ( X ) = a X + . . . be an element of H. Since a commutes with [TT}G(X) = XQ , 
the coefficients of a lie in ¥qh = OL/KOL- Let a G OL be a lift of a. Then a — [a]c 
is an endomorphism of G with positive height, and therefore lies in the left ideal 
H • II C H. We have shown that the natural map 

OD — H/(H.U) 

is surjective. Now the desired equality OD = H follows from the fact (which is easy 
to prove) that H is complete with respect to the U-adic topology. • 

1.3. For the rest of this note, we fix a formal Ox-module G of height two over k. 
By Theorem 1.1, G is uniquely determined, up to isomorphism, and OD •= End/^G) 
is the maximal order in a quaternion division algebra D over K with invariant 1/2. 

Let L/K be a quadratic extension. Let TTL denote a prime element of L. By [S, 
§XIII.3, Corollaire 3], there exists a i^-linear embedding K : L ^ D. It is unique 
up to conjugation by elements of DX . We choose one such embedding and consider 
L, from now on, as a subfield of D. Note that OL C OD- Via this last embedding, 
we may regard G as a formal (9L-module over k. In particular, we obtain a map 
OL —> End(LieG) = k, which extends the canonical morphism OK —• k. 

Let A be the strict completion of OL with respect to A:. In other words, A is the 
completion of the maximal unramified extension of OL, together with a morphism 
A —• k extending the morphism OL k. 

Definition 1.2. — A canonical lift of G with respect to the embedding K : L ^ D is a 
lift F of G over A in the category of C^-modules. 

In more detail, a canonical lift is a formal Ox-module F over A, together with 
an isomorphism of Ox-modules A : F 0 k ^ G and an isomorphism of Ox-algebras 
7 : OL —> End(F), such that the following holds. First, the composition of 7 with the 
regular representation End(F) —> End(LieF) = A is the canonical inclusion OL C A. 
Second, the composition of 7 with the inclusion End(F) ^ End(G) — OD induced 
by A is equal to K. Note that 7 is uniquely determined by the lift F and the first 
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condition. We will omit it from our notation and simply write [cl]f : F —» F for the 
endomorphism 7 (a) . Also, the fixed embedding k will mostly be understood, and we 
write [cl]g - G —• G for the endomorphism n{a). 

Since G has height one as an C^-module, it follows from [VZ, Theorem 3.8], that 
a canonical lift F is uniquely determined, up to ^-isomorphism, by the embedding 
k. On the other hand, using Lubin-Tate theory and the uniqueness statement of 
Theorem 1.1, we also conclude that a canonical lift F exists, for any choice of k. SO 
it is justified to speak about the canonical lift F of G, with respect to k. By choosing 
a suitable parameter X for F, we may always assume that 

[TTL]F(A) = ttlX + XQ2 \ 

where e is the ramification index of the extension L/K. 

1.4. Let F be the canonical lift of G over A, with respect to a fixed embedding 
k : L ^ D. For any positive integer n, we set 

An := A/nl^A, Fn := F ®A An, Hn := EndAn(Fn). 

Since Ol C HN for all 72, we may consider the rings HN as left (^-modules. We have 
a sequence of C^-linear maps, which are injective by [VZ, Lemma 2.6]: 

HN C—> Hn-i c—> • • • c — > HQ = OD-

We shall consider Hn as an C^L-submodules of OD- Since 4̂ is complete, we have 

nn>oHn = OL-

By [VZ, Proposition 3.2], we have an injective map 

Hn-\/Hn '—> H2(G, Mn), 

where M „ := K ) / K + 1 ) . 

Lemma 1.3. — Fix n > 1 and Ze£ a be an element of Hn-i — Hn. Then [kl}g 0 ct G 
i/n — i/n+i. 7n o /̂ier words, multiplication with ttl induces an injective homomor-
phism of Ol-modules 

Hn-i/HN C—> HN/Hn+i. 

Proof. — We may represent a by a power series a(X) G ^.[[A]], without constant 
coefficient, whose reduction modulo TT£ is an endomorphism of Fn-i. We write an 

:or the reduction of a modulo 7rL+1. Set 

e \— ci o [7T]F — F [7T]F O a. 

Since cen_i is an endomorphism of Fn_i, we have e = 0 (mod 7rL). Moreover, if 
(A, {ôa}) G Z2(G, Mn) denotes the cocycle associated to an by [VZ, Proposition 3.2], 
then we have 

e = 6n (mod7TL+1). 
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By assumption, the enolomorphism an_i of Fn-i cannot be lifted to an endomorphism 
of Fn. Therefore, Corollary 3.4 of [VZ] shows that e(X) = cXq + . . . , with c G 

K ) - « + 1 ) . 
Set 

e' := [TTL]F ° ® o [TT]F -F [TT]F O [7TL]F ° a. 

Since [TTL]F is an endomorphism of F, we actually have e' = [TTL\F ° e. Using our 
2 / C 

assumption {KL]F(X) = nLX + XQ and the congruence e = 0 (mod 7rL), we see 
that 

e' = 7rFcXq + • • • = 0 (mod TTL+1). 

By [VZ, Corollary 3.4], this implies that [TTL]F ° ctn is an endomorphism of Fn, 
i.e., [TTL] o a <E Hn. Moreover, if ( A ' , {Sfa}) G Z2(G, Mn+i) denotes the cocycle 
associated to [717,! o an+i, then we have 

e' = <j; ( m o d 7 r L + 2 ) . 

Since 7rLc G (TTL ) - (TT2 ), Corollary 3.4 of [VZ] shows that [TTL}F O an cannot be 
lifted to an endomorphism of Fn. This means that [TTL] 0 CY ^ Hn+\. • 

We can now prove the main result of this section (Proposition 3.3 in [G]). 

Theorem 1.4. — For n > 1 we have HN = OF + TTLOD. 

Proof. — Each group Hn is a submodule of the free rank-two OL-module OD and 
contains the direct factor OL C OD- Therefore, the quotients Hn-i/Hn are cyclic 
OL-modules. By Lemma 1.3, these quotients are killed by TTL- Hence Hn^i/Hn is 
either 0 or isomorphic to OL/^LOL- We claim that only the second case occurs. The 
case n = 1 is dealt with in the following lemma. 

Lemma 1.5. — We have H\ / H0 = OD-

We will prove this lemma in the next subsection. Lemma 1.3 says that left multi-
plication with TTL induces an injective map Hn^i/Hn ^ Hn/Hn+i. So by induction 
on n, Lemma 1.5 and the arguments preceding it show that Hn/Hn+i = OL/^LOL 
for all n and that OD/HU is an 0L-module of length n, killed by TTL. The theorem 
follows immediately. • 

1.5. We are now going to prove Lemma 1.5. We distinguish two cases. 
Case 1: L/K is unramified. In this case, we may assume that TTL = TT and hence 

[TT]F = nX + Xq\ Then 

OD = OL 0 OL • II, 

where n = Xq, see the proof of Theorem 1.1. Let a = ^2i>qo,xXl G ^4i[[X]] be a 
lift of n with leading term Xq. Let (A , {Sa}) G Z2(G, M\) be the cocycle associated 
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