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C H A R A C T E R I Z A T I O N O F T H E R A D O N - N I K O D Y M 

P R O P E R T Y I N T E R M S O F I N V E R S E L I M I T S 

by 

Jeff Cheeger & Bruce Kleiner 

Abstract. — In this paper we clarify the relation between inverse systems, the Radon-
Nikodym property, the Asymptotic Norming Property of James-Ho [10], and the 
GFDA spaces introduced in [51. 
Résumé (Caractérisation de la propriété de Radon-Nikodym en termes de limites inverses) 

Dans cet article nous clarifions la relation entre les systèmes inverses, la propriété 
de Radon-Nikodym, la propriété normative asymptotique de James-Ho [10] et les 
esDaces GFDA. introduits dans 151. 

1. Introduction 

A Banach space V is said to have the Radon-Nikodym Property (RNP) if every 
Lipschitz map / : R - V is differentiable almost everywhere. By now, there are 
a number of characterizations of Banach spaces with the RNP, the study of which 
goes back to Gelfand [7]; for additional references and discussion, see [1, Chapter 5], 
[8]. Of particular interest here is the characterization of the RNP in terms of the 
Asymptotic Norming Property; [10, 8]. 

In this paper we will show that a variant of the GFDA property introduced in [5] 
is actually equivalent to the Asymptotic Norming property of James-Ho, and hence 
by [10, 8], is equivalent to the RNP. In addition, we observe that the GFDA spaces 
of [5] are just spaces which are isomorphic to a separable dual space. 

Definition LI. — An inverse system 

1.2) Wi x< w2 
02 
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is standard if the W^s are finite dimensional Banach spaces and the &'s are linear 
maps of norm < 1. We let TTj : lim W{ -+ Wó denote the projection map. 

Definition 1.3. — Let ^w<^^< be a standard inverse system and V C lim Wi be a 

subspace. The pair ; i imWi,^ has the Determining Property if a sequence VkiCV 
converges strongly provided the projected sequences xww<mù }cWj converge for every 
j , the sequence Vk\ is bounded, and the convergence c<<o^m - \\vk\ is uniform 
in fc. A Banach space U has the Determining Property if there is a pair {Km WUV) 
with Determining Property, such that V is isomorphic to U. 

We have: 

Theorem 1.4. — A separable Banach space has the RNP if and only it has the Deter­
mining Property. 

Since a Banach space has the RNP if and only if every separable subspace has 
the RNP, Theorem 1.4 yields a characterization of the RNP for nonseparable Banach 
spaces as well. 

To prove the theorem, we first observe in Proposition 2.8 that the inverse limit 
lim Wi is the dual space of a separable Banach space. Then, by a completely elemen­
tary argument, we show that a Banach space has the Determining Property if and 
only if it has the Asymptotic Norming Property (ANP) of James-Ho [10]. Since a 
separable Banach space U has the RNP if and only if it has the ANP [10, 8], the 
theorem follows. We remark that there is a simple direct proof that if V has the ANP 
for the Determining Property), then everv Lipschitz map f : R —> V is differentiable 
almost everywhere. 

Characterizations of the RNP using inverse limits are useful for applications; see 
[5], the discussion below concerning metric measure spaces, and [6]. 

Relation with previous work. — In slightly different language, our earlier paper 
[51 also considered pairs ;iimWi,V) , where limWj is the inverse limit of a standard 

inverse system, and V C limW^ is a closed subspace. A Good Finite Dimensional 

Approximation (GFDA) of a Banach space V, a notion introduced in [5], is a pair 

\imWuV] with the Determining Property such that w<< v : V - Wi is a quotient 

map for every i. 
It follows immediately from Lemma 3.8 of [5] that if (lim W ,̂ V) is a GFDA of V, 

then V = lim W{. Since such inverse limits are dual spaces by Proposition 2.8, V 
is a separable dual space in this case. Conversely, using the Kadec-Klee renorming 
Lemma [11, 12], it was shown in [5] that every separable dual space is isomorphic to 
a Banach space which admits a GFDA. Thus, a Banach space admits a GFDA if and 
only if it is isomorphic to a separable dual space. 
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Applications to metric measure spaces. — We will call a metric measure space 
xwww a PI space if the measure is doubling, and a Poincare inequality holds in the 
sense of upper gradients [9, 4]. In [5], differentiation and bi-Lipschitz non-embedding 
theorems were proved for maps / : X —> V from PI spaces into GFDA targets V, 
generalizing results of [4] for finite dimensional targets. As explained above, it turns 
out that these targets are just separable dual spaces, up to isomorphism. 

As an application of the inverse limit framework, we will show in [6] that the 
differentiation theorem [5, Theorem 4.1] and bi-Lipschitz non-embedding theorem [5, 
Theorem 5.1] hold whenever the target has the RNP. 

Acknowledgement. — We are very grateful to Bill Johnson for sharing an obser­
vation which helped give rise to this paper. We are much indebted to Nigel Kalton 
for immediately catching a serious error in an earlier version. 

2. Inverse systems 

In this section, we recall some basic facts concerning direct and inverse systems, 
and the duality between them. Then we show that inverse limits of standard inverse 
systems are precisely duals of separable spaces. 

The following conventions will be in force throughout the remainder of the paper. 

Definition 2.1. — An standard direct system is a sequence of finite dimensional Banach 
spaces [Ei] and 1-Lipschitz linear maps Li : Ei —» Ei+\. 

Definition 2.2. — An standard inverse system is a sequence of finite dimensional Ba­
nach spaces wwww<< ww and 1-Lipschitz linear maps 0. : Ww _> W.m 

Definition 2.3. — A standard direct system is isometrically injective if the maps ti : 
Ei —• Ei+i are isometric injections. 

Definition 2.4. — A standard inverse system is quotient if the maps 0. : Wi+1 - Wi 
are quotient maps. 

By a quotient map of normed spaces, we mean a surjective map TT : U V for 
which the norm on the target is the quotient norm, i.e. for every veV, 

M l = inf{ l id i I u e 7T - l (v) < 
We will refer to the maps ^ and Oi as bonding maps. 
There is a duality between the objects in Definitions 2.1 and 2.2, respectively, 2.3 

and 2.4: if Ei, Lit \ is a standard direct system, then <;;:mp is a standard inverse 
system and conversely; similarly, isometrically injective direct systems are dual to 
quotient systems. To see this, one uses the facts that the adjoint of a 1-Lipschitz map 
of Banach spaces is 1-Lipschitz and the the adjoint of an isometric embedding is a 
quotient map. (This follows from the Hahn-Banach theorem.) In particular, since 
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the spaces in our systems are assumed to be finite dimensional (hence reflexive) every 
inverse system arises as the dual of its dual direct system and conversely. The same 
holds for quotient inverse systems. 

We now recall the definitions of direct and inverse limits. 
Given a standard direct system (Ei, Li, we form the direct limit Banach space 

limE^ as follows. We begin with the disjoint union UiEi, and declare two elements 

e G Ei, e' G Ei> to be equivalent if their images in Ej coincide for some j > max cw^^wx 

Since the bonding maps are 1-Lipschitz, the set of equivalence classes inherits an 
obvious vector space structure with a pseudo-norm. The direct limit lim Ei is defined 
to be the completion of the quotient of this space by the closed subspace of elements 
whose pseudo-norm is zero. Clearly, there are 1-Lipschitz maps 

Ti: Ei^ lim Ei, 

which in the case of isometrically injective direct systems, are isometric injections. 
The union gg<<^ù sxxww is dense in lim Ei. 

The inverse limit lim Wi of a standard inverse system w<<:;ùù is defined as follows. 

The underlying set consists of the collection of elements Wi e UiWi which are 
compatible with the bonding maps, i.e. Oi{wi) = wl-1 for all i, and which satisfy 
sup; K l < oo. This is equipped with the obvious vector space structure and the 
norm 

(2.5) | | { ^ } | | := lim K U . 
J—•oo 

The map 

;2.6) TTj : lim Wl Wj 

given by 

^•({wt}) = 
is 1-Lipschitz, and 

lim 
j—>oo 

M{m})\\ = \\{wi}\\. 

An inverse limit limWf has a natural inverse limit topology, namely the weakest 

topology such that every projection maj TTj : limWi Wj is continuous. Thus a 

sequence .vk] C lim Wi converges in the inverse limit topology to v G lim Wi if and 

only if for every i, we have TTi(̂ fc) —> TTi(^) as k —> 00. 
If www C lim and {vk) invlim v G lim Wi, then 

[2.7) \\v\\ < liminf ||vfc||. 
k 

Also, every norm bounded sequence xww C lim Wi has a subsequence which converges 

with respect to the inverse limit topology; this follows from a diagonal argument, 
because WiiVk, is contained in a compact subset of Wi, for all i. 
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