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GEOMETRY OF MODULI SPACES 

by 

Kefeng Liu, Xiaofeng Sun & Shing-Tung Yau 

Dedicated to Jean Pierre Bourguignon 

Abstract. — In this paper we describe some recent results on the geometry of the 
moduli space of Riemann surfaces. We surveyed new and classical metrics on the 
moduli spaces of hyperbolic Riemann surfaces and their geometric properties. We 
then discussed the Mumford goodness and generalized goodness of various metrics 
on the moduli spaces and their deformation invariance. By combining with the dual 
Nakano negativity of the Weil-Petersson metric we derive various consequences such 
that the infinitesimal rigidity, the Gauss-Bonnet theorem and the log Chern number 
computations. 

Résumé (Géométrie des espaces de modules). — Dans cet article nous décrivons certains 
résultats récents en géométrie de l'espace de modules des surfaces de Riemann. Nous 
parcourons un certain nombre de métriques classiques et nouvelles sur les les espaces 
de modules de surfaces de Riemann hyperboliques et leur propriétés géométriques. 
Ensuite nous discutons la bonté de Mumford et la bonté généralisée de différentes 
métriques sur l'espace de modules et leurs invariance de déformation. En combinant 
avec la négativité de Nakano duale de la métrique de Weil-Peterson nous en tirons 
différentes conséquences telles que la rigidité infinitésimale, le théorème de Gauss-
Bonnet et les calculs de nombres logarithmiques de Chern. 

1. Introduction 

In this paper we describe our recent work on the geometry of the moduli space 

of Riemann surfaces Mg. We will survey the properties of the canonical metrics 

especially the asymptotic behavior. 

This paper is organized as follows. In the second section we will briefly recall 

the deformation theory of Riemann surfaces. In the third section we will recall the 
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Ricci and perturbed Ricci metrics as welll as the Kahler-Einstein metric which were 

discussed in [5] and [6]. 

In the fourth section we will discuss the notion of Mumford goodness and our 

generalizations to the p-goodness and intrinsic goodness. We then discuss the relation 

of the goodness and the complex Monge-Ampere equation as well as the Kahler-Ricci 

flow. In the last section we will discuss the applications of these fine properties of the 

canonical metrics. 

2. Fundamentals of Teichmüller and Moduli Spaces 

We briefly recall the fundamental theory of the geometry of Teichmiiller and moduli 

spaces of hyperbolic Riemann surfaces in this section. Most of the results can be found 

in [5], [6], [7] and [18]. 

Let Mg,k t>e the moduli space of Riemann surfaces of genus g with k punctures 

such that 2g — 2 + k > 0. By the uniformization theorem we know there is a unique 

hyperbolic metric on such a Riemann surface. To simplify the computation, through 

out this paper, we will assume k = 0 and g > 2 and work on A4g. Most of the results 

can be trivially generalized to Aig,k-

We first recall the local geometry of Mg. For each point s G Mg, let Xs be the 

corresponding Riemann surface. By the Kodaira-Spencer deformation theory and 

Hodge theory, we know 

TaMg* <:;< XS,TXS) ^$$ if0'1! w<<ùù^^ ^^ 

It follows direct from Serre duality that 

T: Mg xw w^^p XS,K 2 
xs. ^^ 

By the Riemann-Roch theorem, we know that the complex dimension of the moduli 

space is n = dime Mg — 3# — 3. Given a Riemann surface X of genus g > 2, we 

denote by A the unique hyperbolic (Kahler-Einstein) metric on X. Let z be local 

holomorphic coordinate on X. We normalize A: 

(2.i: c^djlog A = A. 

Let Tg be the Teichmiiller space. It is well known that Tg is a domain of holomorphy 

and Mg is a quasi-projective orbifold. There are many canonical metrics on Tg. These 

are the metrics where biholomorphisms are automatically isometries and thus these 

metrics descent down to Mg. 

There are three complex Finsler metrics on Tg: The Teichmiiller metric || • | |T , 

the Kobayashi metric || • \\K and the Caratheodory metric || • \\c- Each of these 

metrics defines a norm on the tangent space of Tg. These metrics are non-Kahler. By 
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the famous work of Royden we know that the Teichmiiller metric coincides with the 
Kobayashi metric: 

xw T = I • K' 

We now describe the Kàhler metrics. The first known Kàhler metric is the Weil-
Petersson metric coWP. Since Tg is a domain of holomorphy, there is a complete 
Kàhler-Einstein metric on Tg due to the work of Cheng and Yau [2]. Since Mg is quasi-
projective, there exist a Kàhler metric on Mg with Poincaré growth. Furthermore, one 
has the Bergman metric associate to Tg and the Kàhler metric defined by McMullen 
[10] by perturbing the Weil-Petersson metric. 

In [5] and [6] we defined two new Kàhler metrics: the Ricci and perturbed Ricci 
metrics which have very nice curvature and asymptotic properties. These metrics will 
be discussed in the following sections. 

We now recall the construction of the Weil-Petersson metric. Let fai»-" ,sn) be 
local holomorphic coordinates on Mg near a point p and let Xs be the corresponding 

Riemann surfaces. Let p : TsMq ^H1 Xs, TX s ww #0,1 dSidzlxwwog be the Kodaira-
Spencer map. Then the harmonic representative of p d 

dsi ) is given by 

ww^^ P 
d 

xww 
woo^m f A - l dSidzl<og\ 

d 
dz 

® dz = Bi. 

dSidziigf^^log = - A -l ^^^w<< log À and let Ai = dzdi, then the harmonic lift Vi of d 
dsi is 

given by 

f2.3 Vi = 
d 

dsi 
+ ai 

d 
ldz' 

The well-known Weil-Petersson metric o;wp << c^^c, 
2 

-hßdsi A dsj on M g is the L2 
metric on Mg: 

'2.< ^^^ 
v,,nn 

s) = 
<<<< 

AiAj dv 

where dv = ^f^Xdz A dz is the volume form on Xs. It was proved by Ahlfors that 
the Ricci curvature of the Weil-Petersson metric is negative. The upper bound of 
the Ricci curvature of the Weil-Petersson metric was conjectured by Royden and was 
proved by Wolpert [16]. 

In our work [5] we defined the Ricci metric uT: 

;2.5) <<iipl —Rie ̂ ^w<< 

and the perturbed Ricci metric CJ~: 
T 

2.6 r w<a^^ + <hi^^^^ 

where C is a positive constant. These new Kàhler metrics have good curvature and 
asymptotic properties and play important roles in out study. 
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Now we describe the curvature formulas of the Weil-Petersson metric. Please see 

[5] and [6] for details. We denote by fq = AiAj where each A{ is the harmonic 

Beltrami differential corresponding to the local holomorphic vector field -J^. It is 

clear that fq is a function on X. We let • = —dzc\ be the Laplace operator, let 

T — ( • + l ) -1 be the Green operator and let eq — T(fq). The functions and fq 

are building blocks of these curvature formula. 

Theorem 2.1. — The curvature formula of the Weil-Petersson metric was given by 

(2.7) R ijkl 
^w<< 

<kk 
ddx fkl ww w<< fkj dv. 

This formula was first established by Wolpert [16] and was generalized by Siu [14] 

and Schumacher [13] to higher dimensions. A short proof can be found in [5]. 

It is easy to derive information of the sign of the curvature of the Weil-Petersson 

metric from its curvature formula (2.7). However, the Weil-Petersson metric is incom

plete and its curvature has no lower bound. Thus we need to look at its asymptotic 

behavior. We now recall geometric construction of the Deligne-Mumford (DM) moduli 

space and the degeneration of hyperbolic metrics. Please see [5] and [16] for details. 

Let Mg be the Deligne-Mumford compactification of Mg and let D = Mg \ Mg. 

It was shown in [3] that D is a divisor with only normal crossings. A point y G D 

corresponds to a stable nodal surface Xy. A point p G Xy is a node if there is a 

neighborhood of p which is isometric to the germ {(u, v) \ uv = 0, \v\ < 1} C C2. 

Let pi, — - ^Pm £ Xy be the nodes. Xy is stable if each connected component of 

Xy \ {pi , • • • ,Pm} has negative Euler characteristic. 

Fix a point y G D, we assume the corresponding Riemann surface Xy has m nodes. 

Now for any point s G Mg lying in a neighborhood of y, the corresponding Riemann 

surface Xs can be decomposed into the thin part which is a disjoint union of m collars 

and the thick part where the injectivity radius with respect to the Kahler-Einstein 

metric is uniformly bounded from below. 

There are two kinds of local holomorphic coordinate on a collar or near a node. 

We first recall the rs-coordinate defined by Wolpert in [18]. In the node case, given 

a nodal surface X with a node p G X , we let a, b be two punctures which are glued 

together to form p. 

Definition 2.1. A local coordinate chart (U^u) near a is called rs-coordinate if 

u(a) = 0 where u maps U to the punctured disc 0 < \u\ < c with c > 0, and the re
striction to U of the Kâhler-Einstein metric on X can be written as 

The rs-coordinate (V, v) near b is defined in a similar way. 
2|n|2(iog|u|; 2 du |2 

In the collar case, given a closed surface X , we assume there is a closed geodesic 

7 C X such that its length / = / ( 7 ) < c* where c* is the collar constant. 
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