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THE Q-CURVATURE EQUATION 
IN CONFORMAL GEOMETRY 

by 

Sun-Yung Alice Chang & Paul C. Yang 

Dedicated to J. P. Bourguignon on his 60th birthday 

Abstract. — In this paper we survey some analytic results concerned with the top 
order Q-curvature equation in conformal geometry. Q-curvature is the natural gen
eralization of the Gauss curvature to even dimensional manifolds. Its close relation 
to the Pfaffian, the integrand in the Gauss-Bonnet formula, provides a direct relation 
between curvature and topology. 

Résumé (L'équation de Q-courbure en géométrie conforme). — Dans cet article nous exa
minons certains résultats analytiques autour de l'équation de Q-courbure d'ordre 
maximal en géométrie conforme. La Q-courbure est la généralisation naturelle de la 
courbure de Gauss aux variétés de dimension paire. Sa proximité avec le pfaffien 
(l'intégrande de la formule de Gauss-Bonnet) nous fournit une relation directe entre 
géométrie et topologie. 

1. Introduction 

Recently, there is a lot of interest in the study of higher order Q-curvature invariant. 

This notion arises naturally in conformal geometry in the context of conformally co-

variant operators. Paneitz ([23], see also [6]) gave the first construction of the fourth 

order conformally covariant Paneitz operator in the context of Lorentzian geometry 

in dimension four. Based on the ambient metric construction introduced by Feffer-

man and Graham ([14],[15]), Graham-Jenne-Mason and Sparling [18] systematically 

constructed conformally covariant operators of higher orders. Each such operator 

gives rise to a semi-linear elliptic equation analogous to the Yamabe equations which 
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we shall call the Q-curvature equation. These equations share a number of common 

features. Among these we mention the following: 

(i) the lack of compactness: the nonlinearity always occur at the critical exponent, 

for which the Sobolev embedding is not compact; 

(ii) the lack of maximum principle: for example, it is not known whether the solution 

of the fourth order Q-curvature equation on manifolds of dimensions greater 

than four may touch zero. 

In spite of these difficulty, there has been significant progress on questions of exis

tence, regularity and classification of entire solutions for these equations in the recent 

work of Djadli-Malchiodi [13], Adimurthi-Robert-Struwe [1] and X . X u [25]. On the 

other hand, in the case when the dimension is even n = 2k, the Branson-Paneitz 

operator and its associated Q-curvature equation is more accessible. In this article, 

we will give a brief survey of two results for the Q-curvature equation, each of which 

makes use of its close relation to the Pfaffian; both of these results are joint works 

with Jie Qing. The first [10] is a generalization of the Cohn-Vossen-Huber inequality 

([22]) to complete conformai metrics on domains in R 4 . The second gives a Gauss-

Bonnet type formula for Poincaré-Einstein metrics in which the renormalized volume 

plays a role. As the original article [12] of the second result appeared in Russian, 

we provide an exposition with some details. In section two, we review the notion 

of conformally covariant equations, their associated Q-curvatures and the associated 

boundary operators for manifold with boundary. We then provide an outline for these 

two results in sections three to five. 

2. Conformally covariant operators and the Q-curvature equation 

In general, we call a metrically defined operator A defind on a Riemannian manifold 

( M n , # ) conformally covariant of bidegree (a, 6), if under the conformai change of 

metric gw = e2wg, the pair of corresponding operators Aw and A are related by 

Aw(Y)=e -bw A(ea Y) for all ipeC°°{Mn). 

A basic example is the conformai Laplacian L = - A + n - 2 
4 ( n - l ) R where R is the 

scalar curvature of the metric. The conformai Laplacian is conformally covariant 

of bidegree r n - 2 
2 ' 

n + 2 \ 
2 , and the associated curvature equation is the equation for 

prescribing scalar curvature: writing ew = 
2 

Un~2 we have 

a) Lu = 
n - 2 

4(n - 1) 
Ruu 

n + 2 
n - 2 

where Ru is the scalar curvature of the metric 9 W = 9 2 w 9 = 
4 

u"-*g. In case of surfaces, 

the corresponding Q-curvature equation becomes the equation for prescribing Gauss 
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curvature: 

(2) - Aw + K = Kwe2w, 

where Kw is the Gaussian curvature for the metric gw, and we have the Gauss-Bonnet 

formula: 

(3) 2nX(M) = 
M 

KdA. 

In dimension four, S. Paneitz found the fourth order conformally covariant operator: 

(4) PA(p = P<p = A2(p + S 
2 

,3 
Rg - 2Ric dip 

where S denotes the divergence, d the deRham differential and Ric the Ricci tensor. 

For example: 

- On ( # 4 , \dx\2), P = A 2 , 

- On ( S 4 , < ? C ) , P = A 2 - 2 A , 

- On ( M 4 , Ö ) , g Einstein, P = ( - A ) o ( L ) . 

The Paneitz operator P has bidegree (0 ,4) on 4-manifolds, i.e. 

(5) Pqw (Q) = e4wPq(Q) VQEC00(M4). 
The fourth order Q-curvature is given by 

(6) Q = 
1 

G 
( - A ß + # 2 - 3 | R i c | 2 ) . 

Under the conformal change of metric 9w=2weg the Q-curvature equation (see 

[6], also [8]) takes the form 

(7) Pw + Q = Qwe4w, 
where Qw is the Q curvature for the metric gw. 

The Gauss-Bonnet formula in dimension four may be written as 

(8) 8 T T 2 X ( M ) = 
M 

(\W\2 + Q)dV, 

where W is the Weyl tensor. Since \Wg\g = e~2w\W9w\gw, on manifold of dimension 

four, | W | 2 d F is a pointwise conformal invariant, thus it follows from the Gauss-

Bonnet formula that the Q-curvature integral is a global conformal invariant. 

For 4-manifold X4 with boundary M 3 and a Riemannian metric g defined on 

closure of X 4 , Chang-Qing [9] derived the matching boundary operator 

(9) P 3 = -
l d 

2dn 
A - Ä 

d 

dn 

2 

3 
H A + LagVaV0 + 

1 

.3 
R — RaNaN 

d 

dn + 2 
3 

VJH" • V . 

with the associated third order curvature invariant 

(10) T = 
1 

12 

d 

dn 
R + 

1 

6 
RH — RaNßNLaß + D 

9 
H 3 -

1 

3 
TrL3-

1 

3 
AH, 

SOCIÉTÉ M A T H É M A T I Q U E DE F R A N C E 2008 



2 6 S.-Y. A. C H A N G & P. C. Y A N G 

where where ^ is the outer normal derivative, A is the trace of the Hessian of 

the metric on the boundary, V is the derivative in the boundary, L is the second 

fundamental form of boundary, H = TrL, N denotes the inner normal direction. We 

have used an orthonormal frame and let the latin indices run through the ambient 

indices and the Greek indices only run through the boundary directions, and all 

curvature are taken with respect to the metric g. 

In particular, via the conformai change of metrics gw = e2wg, P3 and T satisfy the 

equation: 

( h ) P3W + T = Twe
3w on M, 

and 

(12) (P 3)«, = e~3wP3 
on M. 

The Chern-Gauss-Bonnet formula for 4-manifolds with boundary is then modified 

with a boundary term: 

(13) 8tt2

x(X) = 
X 

(\W\2 + Q)dv + 2 
M 

(T - £ 4 - C5)da. 

In the boundary integral above the invariants £ 4 and £ 5 involve the ambient curvature 

tensor and the second fundamental form L a&, and their expressions are 

£ 4 = -
RH 

3 
4- RaNaNH — RaNßNLaß + Rya-fßLaß, 

and 

£ 5 = -
2 
9 

LaoLßßLy + Laa Lßy Lßy — LotßLß1Lloc. 

Analogous to the Weyl term, £ 4 and £ 5 are boundary invariant of order three which 

are pointwise invariant under conformal change of metrics. Hence 

(14) 
X 

Qdv + 2 
M 

Tdo 

is a global conformal invariant. 

In dimension four, an important result is the following criteria for positivity of the 

Paneitz operator due to Gursky-Viaclovsky: 

Theorem 1 ([21]). Let (M4,g) be a metric with positive Yamabe constant Y (M, g) = 

infuno 
Luu 

ÌM1T 
and satisfying 

M 

Qdv-i 
1 

6 
( y ( M , < ? ) ) 2 > 0 , 

then the Paneitz operator is positive except for constants. 

It is an open question whether there is an analogous result in higher dimensions. 
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