Astérisque

GREGORY A. FREIMAN On the structure and the number of sum-free sets

Astérisque, tome 209 (1992), p. 195-201

http://www.numdam.org/item?id=AST_1992_209_195_0

© Société mathématique de France, 1992, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON THE STRUCTURE AND THE NUMBER OF SUM-FREE SETS

Gregory A. FREIMAN

1. Introduction

A finite set A of positive integers is called *sum-free*, if $A \cap (A+A) = \emptyset$. In this note we study the structure of sum-free sets. For n odd, $\{1,3,5,\ldots,n\}$ and $\{\frac{n+1}{2}, \frac{n+3}{2}, \ldots, n\}$ are important examples of such sets.

For any non-empty finite set $K \subset \mathbb{Z}$, we denote by $\ell(K)$ and m(K), respectively, the largest and smallest element of K, by d(K) the greatest common divisor of the elements of K, and by |K| the cardinality of K. For the sets A considered below, we set m := m(A), $\ell := \ell(A)$, a := |A|, 2A := A + Aand $A - m := \{x - m \mid x \in A\}, \ \ell - A := \{\ell - x \mid x \in A\}$. Denote $[m,n] = \{x \in \mathbb{Z} \mid m \le x \le n\}$. There is a general property of sum-free sets (from [CE], page 63) which we will use later: If B is a sum-free subset of $\{1, \ldots, n\}$ then B contains at most one of i and $\ell(B) - i$, for each positive integer $i < \ell(B)$; and if $\ell(B)$ is even, then $\frac{1}{2}\ell(B) \notin B$. Hence

$$|B| \le \left\lceil \frac{1}{2}\ell(B) \right\rceil \le \left\lceil \frac{1}{2}n \right\rceil \,. \tag{1}$$

We will show that if the cardinality of a sum-free set A does not differ much from $\frac{1}{2}\ell(A)$, then A does not differ much from one of the two examples mentioned above. More precisely, we will prove

S. M. F. Astérisque 209** (1992) **Theorem 1.** Let A be a sum-free set of positive integers for which $a \ge \frac{5}{12}\ell+2$. Then either

- 1) All elements of A are odd, or
- 2) A contains both odd and even integers, $m \ge a$, and for $A_1 := A \cap [1, \frac{1}{2}\ell]$ we have

$$|A_1| \leq \frac{\ell-2a+3}{4}$$

Let f(n) denote the number of sum-free subsets of $\{1, \ldots, n\}$.

P.J. Cameron and P. Erdös in their talk at the First Conference of the Canadian Number Theory Association [CE, page 64] conjectured that

$$f(n) = O(2^{\frac{n}{2}}) .$$

P. Erdös and A. Granville, and independently N. Calkin as well as N. Alon [Al] showed that

$$f(n) = 2^{\left(\frac{1}{2} + o(1)\right)n}$$

The proof in [Al] is more general and in particular applies to any group.

As a simple corollary of Theorem 1 we will prove that the number of sum-free sets $A \subset [1, n]$ for which $a \geq \frac{5}{12}\ell + 2$ has the bound $O(2^{\frac{n}{2}})$.

2. The Structure of Sum-Free Sets of Large Cardinality

As a main tool in the proof of Theorem 1 we will use the following two theorems from [F1].

Let M and N be finite sets of non-negative integers such that m(M) = m(N) = 0.

Theorem 2. If $\ell(M) = \max(\ell(M), \ell(N))$ and $\ell(M) \le |M| + |N| - 3$, then $|M + N| \ge \ell(M) + |N|$.

Theorem 3. If $\max(\ell(M), \ell(N)) \ge |M| + |N| - 2$ and $d(M \cup N) = 1$, then

$$|M + N| \ge |M| + |N| - 3 + \min(|M|, |N|)$$
.

We shall also use the following result from [F2]:

Lemma. If $A \subset \mathbb{Z}$ is finite, then

$$|2A| \ge 2|A| - 1 . (2)$$

Proof of Theorem 1. Let us call a set A difference-free if $A \cap (A-A) = \emptyset$. Note first that the notions of sum-free set and of difference-free set coincide. For if $x, y, z \in A$, then $x = y + z \iff y = x - z$. Thus if A is not sum-free then A is not difference-free and conversely.

In the set A - A, to each positive difference x - y there corresponds the negative difference y - x. Denote by $(A - A)_+$ and $(A - A)_-$, respectively, the set of positive and negative differences.

Since $A - A = (A - A)_+ \cup (A - A)_- \cup \{0\}$ and $|(A - A)_+| = |(A - A)_-|$, we have

$$|A - A| = 2|(A - A)_{+}| + 1.$$
(3)

The sets A and $(A - A)_+$ are both contained in the interval $[1, \ell]$. Since A is difference-free, it follows that

$$|A| + |(A - A)_{+}| \le \ell .$$
(4)

This inequality is very restrictive for large a = |A|, and we will use it in conjunction with a lower bound for $|(A - A)_+|$ to be obtained from Theorems 2 and 3, to prove Theorem 1.

Let us study various cases according to the value of d(A - m).

We first observe that $d(A-m) \leq 2$, for if $d(A-m) \geq 3$ then $a \leq \frac{\ell}{3} + 1$ which contradicts the condition $a \geq \frac{5}{12}\ell + 2$.

In case d(A - m) = 2 first consider the subcase when m is odd. Then all the numbers of A are odd and we have Case 1 of Theorem 1.

If d(A - m) = 2, then *m* cannot be even, under the hypothesis of Theorem 1. Indeed, if *m* is even and d(A - m) = 2 then all the integers in *A* are even and the set $\frac{A}{2} := \{x \mid x = \frac{a}{2}, a \in A\}$ is sum-free, with largest element $\ell_1 = \frac{\ell}{2}$. Also if $a \ge \frac{5}{12}\ell + 2$ then (1), applied to $B = \frac{A}{2}$, would yield $\frac{5}{12}\ell + 2 \le a = |A| = |\frac{A}{2}| = |B| \le \frac{\ell_1 + 1}{2} = \frac{\ell + 2}{4}$, which is absurd.

The only case left is that in which d(A - m) = 1. Clearly the elements of A cannot then all be of the same parity. We define sets M and N by M := A - m and $N := \ell - A$. Then m(M) = m(N) = 0, $\ell(M) = \ell(N) = \ell - m$, |M| = |N| = a, |M + N| = |A - A|; and $d(M \cup N) = 1$ since d(M) = 1. If we had

$$\ell - m \ge 2a - 2 , \qquad (5)$$

Theorem 3 would apply, giving $|A - A| = |M + N| \ge 3a - 3$, whence $|(A - A)_+| \ge \frac{3a}{2} - 2$ by (3). Using this in (4) together with $a \ge \frac{5}{12}\ell + 2$ would yield the absurd

$$\ell \ge |(A-A)_+| + a \ge rac{5a}{2} - 2 > rac{25}{24}\ell$$
.

Hence (5) is impossible: $\ell - m < 2a - 2$ if d(A - m) = 1 and $a \ge \frac{5}{12}\ell + 2$. Theorem 2 applies, and gives $|A - A| \ge \ell - m + a$, whence $|(A - A)_+| \ge \ell$

 $\frac{1}{2}(\ell - m + a - 1) \text{ by (3).}$ Using this inequality, (4) and $a \ge \frac{5}{12}\ell + 2$, we get

$$m > \frac{\ell}{4} \ . \tag{6}$$

Having obtained this lower bound for m, we can strengthen it as follows.

For any positive integer *i*, the integers *i* and m + i cannot both belong to $A(m \in A \text{ and } A \text{ is sum-free})$. Hence the union $[\ell - 2m + 1, \ell]$ of the intervals $I = [\ell - 2m + 1, \ell - m]$ and I + m contains at most *m* elements of *A*. Recall that $A_1 = A \cap [1, \frac{\ell}{2}]$. Let $A_2 = A \setminus A_1 = A \cap [\frac{\ell+1}{2}, \ell]$. Then by (6), $A_2 \subset [\frac{\ell+1}{2}, \ell] \subset [\ell - 2m + 1, \ell]$, and therefore

$$|A_2| \le m . \tag{7}$$

Now $2A_1 \cap A_2 = \emptyset(A_2 \subset A, \text{ and } 2A_1 \cap A = \emptyset \text{ since } A \text{ is sum-free}) \text{ and by (6)}, 2A_1 \subset \left[\frac{\ell+1}{2}, \ell\right].$ Hence

$$|2A_1| + |A_2| \le \left| \left[\frac{\ell+1}{2}, \ell \right] \right| \le \frac{\ell+1}{2} \; .$$

By adding this inequality to (7) and using (2) and $|A_1| + |A_2| = a$ we get $2a \le \frac{1}{2}(\ell+3) + m$. Hence with $a \ge \frac{5}{12}\ell+2$ we get

$$m > \frac{\ell}{3} + 2 . \tag{8}$$

From (8) we have $A \subset [m, \ell] \subset [\ell - 2m + 1, \ell]$. We have seen that this last interval contains at most *m* integers from *A*; it follows that $m \ge a$, which proves the first inequality in Case 2 of Theorem 1.

To establish the second inequality of Case 2, we observe that $\ell - A_1$, $2A_1$, and A_2 are pairwise disjoint subsets of $\left\lfloor \frac{\ell+1}{2}, \ell \right\rfloor$. We have already verified this for $2A_1$ and A_2 . Also, $(\ell - A_1) \cap A_2 = \emptyset$ since A is sum-free and $(\ell - A_1) \cap 2A_1 = \emptyset$ because $\ell - A_1 \subset [0, \ell - m]$, $2A_1 \subset [2m, \ell]$ and $\ell - m < 2m$ by (8). Finally, $\ell - A_1 \subset \left\lfloor \frac{\ell}{2}, \ell - 1 \right\rfloor$ since $A_1 \subset \left[1, \frac{\ell}{2}\right]$; and $\frac{\ell}{2} \notin A$ if ℓ is even, because A is sum-free.

It now follows that $|\ell - A_1| + |2A_1| + |A_2| \le \frac{\ell+1}{2}$, whence by (2), $3|A_1| + |A_2| - 1 \le \frac{\ell+1}{2}$, or $|A_1| \le \frac{\ell}{4} - \frac{a}{2} + \frac{3}{4}$. This completes the proof of Theorem 1.