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ON THE STRUCTURE AND THE NUMBER 

OF SUM-FREE SETS 

Gregory A. FREIMAN 

1. Introduction 

A finite set A of positive integers is called sum-free, if AD (A + A) = 0. In 
this note we study the structure of sum-free sets. For n odd, { 1 , 3 , 5 , . . . , n} 
and { n+1/2 n+3/2} ̂ l^,..., n} are important examples of such sets. 

For any non-empty finite set i f C Z, we denote by £{K) and ra(if), 
respectively, the largest and smallest element of if, by d(K) the greatest 
common divisor of the elements of if, and by |if | the cardinality of if. For the 
sets A considered below, we set m := m(A), £ := £(A), a := 2A := A+A 
and A — m := {x — m \ x e A}, £ — A := {i — x \ x e A}. Denote 
[m,n] = {x £ Z \ m < x < n}. There is a general property of sum-free sets 
(from [CE], page 63) which we will use later: If B is a sum-free subset of 
{ 1 , . . . , n } then B contains at most one of i and £(B) — i, for each positive 
integer i < £(B); and if £(B) is even, then \£(B) £ B. Hence 

\B\ < \\t(B)\ < \\n] . 1/2n]. (1) 

We will show that if the cardinality of a sum-free set A does not differ 
much from \£(A), then A does not differ much from one of the two examples 
mentioned above. More precisely, we will prove 
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Theorem 1. Let A be a sum-free set of positive integers for which a > ^£+2. 
Then either 

1) All elements of A are odd, or 
2) A contains both odd and even integers, m> a, and for A\ := A fl [ l , \t\ 

we have 

\M\< 
£ - 2a + 3 

4 

Let f(n) denote the number of sum-free subsets of { 1 , . . . , n } . 
P.J. Cameron and P. Erdos in their talk at the First Conference of the 

Canadian Number Theory Association [CE, page 64] conjectured that 

/ ( » ) = 0 ( 2 * ) . 

P. Erdos and A. Granville, and independently N. Calkin as well as N. Alon 
[Al] showed that 

/ (n ) = 2 ^ + ° ( 1 ) ) " . 

The proof in [Al] is more general and in particular applies to any group. 
As a simple corollary of Theorem 1 we will prove that the number of 

sum-free sets A C [l,n] for which a > -^£ + 2 has the bound O ( 2 ^ ) . 

2. The Structure of Sum-Free Sets of Large Cardinality 

As a main tool in the proof of Theorem 1 we will use the following two 
theorems from [Fl]. 

Let M and N be finite sets of non-negative integers such that m(M) = 
m(N) = 0. 

Theorem 2. If£(M) = max(^(M), £(N)) and £{M) < \M\ + \N\ - 3, then 
\M + N\>l{M) + \N\. 

Theorem 3. I /max(/(M), £(N)) > \M\ + \N\-2 and d(M U N) = 1, then 

\M + N\ > \M\ + |jV| - 3 + min(|M|, \N\) . 

We shall also use the following result from [F2]: 

Lemma. If A C Z is finite, then 

\2A\ > 2\A\ - 1 . (2) 
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Proof of Theorem 1. Let us call a set A difference-free if AD(A — A) = 0. 
Note first that the notions of sum-free set and of difference-free set coincide. 
For if x, t/, z e A, then x = y + z y — x - z. Thus if A is not sum-free 
then A is not difference-free and conversely. 

In the set A — A, to each positive difference x — y there corresponds the 
negative difference y - x. Denote by (A - A)+ and (A - respectively, 
the set of positive and negative differences. 

Since A - A = (A - A)+ U (A - A)_ U { 0 } and \(A - A)+1 = \(A - A)_ |, 
we have 

\A-A\ = 2\(A-A)+\ + l . (3) 

The sets A and (A — A)+ are both contained in the interval [1,/]. Since 
A is difference-free, it follows that 

\A\ + \(A-A)+\<1. (4) 

This inequality is very restrictive for large a = and we will use it in 
conjunction with a lower bound for \(A — A)+ \ to be obtained from Theorems 
2 and 3, to prove Theorem 1. 

Let us study various cases according to the value of d(A — m). 
We first observe that d(A - m) < 2, for if d(A - m) > 3 then a < | + 1 

which contradicts the condition a > + 2. 
In case d(A — m) = 2 first consider the subcase when m is odd. Then all 

the numbers of A are odd and we have Case 1 of Theorem 1. 
If d(A — m) = 2, then m cannot be even, under the hypothesis of The­

orem 1. Indeed, if m is even and d(A - m) = 2 then all the integers in A 
are even and the set | := {x \ x = ~, a 6 A} is sum-free, with largest 
element ¿1 = | . Also if a > + 2 then (1), applied to B = ~ , would yield 
±1 + 2 < a = \A\ = |f I = | £ | < = *±*, which is absurd. 

The only case left is that in which d(A — m) = 1. Clearly the elements 
of A cannot then all be of the same parity. We define sets M and N by 
M := A-m and N := I—A. Then m(M) = m(N) = 0, ^(M) = l(N) = l-m, 
\M\ = \N\ = a,\M + N\ = \A- A\] and d(M UN) = 1 since d(M) = 1. If we 
had 

/ - m > 2a - 2 , (5) 

Theorem 3 would apply, giving = |M + iV| > 3a - 3, whence 
\(A - A)+| > ^ - 2 by (3). Using this in (4) together with a > + 2 
would yield the absurd 

^> \(A-A)+\+a> 
5a 

2 
- 2 > 

25 

24 
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Hence (5) is impossible: £ — m < 2a — 2 if d(A — m) = 1 and a > j^l + 2. 
Theorem 2 applies, and gives |A - A\ > £ — m + a, whence \(A - A)+ \ > 

\(£-m + a-l)hy (3). 
Using this inequality, (4) and a > ~£ + 2, we get 

m > -A • l/4 (6) 

Having obtained this lower bound for ra, we can strengthen it as follows. 
For any positive integer i, the integers i and m + i cannot both belong 

to A(m G A and A is sum-free). Hence the union [£ — 2m + 1,^] of the 
intervals I = [£ — 2m + 1, £ — m] and I + m contains at most m elements of 
A. Recall that A1 = AH [l, § ] . Let A2 = A\Ax = AH [ ^ f 1 , / ] . Then by (6), 
A2 C [ ^ , £ ] C [£ - 2m + 1,*], and therefore 

| A 2 | < m . (7) 

Now 2Ai HA2= 0 (^2 C -A, and 2Ai C\A = 0 since A is sum-free) and by (6), 
2Ar C [l+1,l/2]. Hence 

|2i4i| + |i4 a | < l<—l+1/2 
I - o 

By adding this inequality to (7) and using (2) and \Ai \ + \A2\ = a we get 
2a < \{£ + 3) + m. Hence with a > ^ + 2we get 

m > ^ + 2 . (8) 

From (8) we have A C [m,£] C [£ — 2m + 1,£]. We have seen that this last 
interval contains at most m integers from A; it follows that m > a, which 
proves the first inequality in Case 2 of Theorem 1. 

To establish the second inequality of Case 2, we observe that £ — Ai, 
2Ai, and A2 are pairwise disjoint subsets of [ ^ ^ , / ] . We have already ver­
ified this for 2Ai and A2. Also, (£ — A\) fl A2 = 0 since A is sum-free and 
( / - i 4 i ) n 2AX = 0 because l-Ax C [ 0 , / - m ] , 2AX C [2m,£] and £-m < 2m 
by (8). Finally, * - Ax C [f, / - l ] since Ax C [l, f ] ; and | £ A\i£ is even, 
because A is sum-free. 

It now follows that \£ - Ax\ + |2Ai| + \A2\ < f̂1, whence by (2), 
3|Ai| + \A2\ - 1 < f̂1, or \AX\ < | - § + f. This completes the proof 
of Theorem 1. 

/ + 1 
2 
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