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ON SMALL SUMSETS IN ABELIAN GROUPS 

by 

Vsevolod F. Lev 

Abstract, — In this paper we investigate the structure of those pairs of finite subsets 
of an abelian group whose sums have relatively few elements: \A 4- B\ < \A\ 4-
|£| . In 1960, J. H. B. Kemperman gave an exhaustive but rather sophisticated 
description of recursive nature. Using intermediate results of Kemperman, we obtain 
below a description of another type. Though not (generally speaking) sufficient, our 
description is intuitive and transparent and can be easily used in applications. 

1. Introduction 

By G we denote an abelian group. A finite non-empty subset S Ç G is said to be 
an arithmetic progression with difference d if S is of the form 

S = {a + id: i = 1, . . . , 151} (a, d G G). 

If, in addition, the order of the group element d satisfies ord d > \S\ + 2, then we say 
that S is a true arithmetic progression. 

Let A and B be finite subsets of G. We write 

A + B = {a + b: a e A, be B}, 

and consider the following condition: 

\A + B\< L4I + L B I - 1 . (*) 

The aim of this paper is to prove the following 

Main Theorem. — Let A and B satisfy (*), and suppose that max{|A|, \B\} > 1. 
Then there exist a finite subgroup H C G and two finite subsets S\, S2 C G such that 
A C Si + H, B C. S2 + H, and one of the following holds: 

i) \Si\ = \S2\ = 1, and\A + B\ > §|1T| + 1; 
ii) |5 i | = 1, |S2| > 1, and\A + B\> (|52| - 1)\H\ + 1; 

hi) |5i | > 1, |52| = 1, and\A + B\ > (\Si\ - 1)\H\ + 1; 
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318 V.F. LEV 

iv) min{|5i |5 |S2|} > 1, and \A + B\ > ( |Si | + |S2| - 2)\H\ + 1; moreover, Si and 
S2 are true arithmetic progressions with common difference d of order at least 
ordd>|Si | + |S2| + l . 

It can be easily verified that the conclusion of Main Theorem implies 

IA + B + H\ - \A + B\ < \H\ - 1 

in cases ii)—iv), and 

IA + B + H\ - \A + £| < 
1 

2 
| f f | - l 

in case i): just observe that 

\A + B + H\<\S!+S2+H\< |5i + S2| |if |. 

Thus, A -I- f? "almost" fills in a system of if-cosets, while both (A + H)/H and 
(B + i f ) / i f are in arithmetic progressions — unless some of them consists of just one 
element. 

The Main Theorem will be proved in Section 3. Now, we give two definitions. 
We say that the subgroup H C G, \H\ > 2 is a period of the finite subset G C G 

if C is a union of one or more iJ-cosets, that is if C + H = C. In this case C is called 
periodic and we write H — P{C). 

We say that the subgroup H C G, | H | > 2 i s a quasi-period of the finite subset 
C C G, if C is a union of one or more if-cosets and possibly a subset of yet another 
if-coset. In this case C is called quasi-periodic and we write H = Q(C). 

If H = P(C), we also say that i f is a trtie period of G, as opposed to H = Q(G) , 
when G is a quasi-period. Obviously, if H = P (G) or i f = <2(G) then | i f | < 00. 
Notice that according to the above definitions each periodic set is also quasi-periodic. 

2. Auxiliary results 

The following deep result due to Kemperman (see [1]) plays the central role in our 
proof. 

Theorem 1 (Kemperman). — Let A and B be finite subsets of G such that (*) holds 
and min{|A|, \B\} > 1. Then either A + B is an arithmetic progression or A + B is 
quasi-periodic. 

Corollary 1. — Under the assumptions of Theorem 1, one of the following holds: 

i) A + B is in true arithmetic progression; 
ii) A + B = c + H\ { 0 } where i f C G is a subgroup, and c G G — an element of 

G; 
hi) A 4- B is quasi-periodic. 

The next lemma also originates in [1]. 

Lemma 1 (Kemperman). — Suppose that (*) holds and that A + B is in true arith­
metic progression of difference d. Then also A and B are in true arithmetic pro­
gressions with the same difference d. Moreover, in (*) equality holds, and therefore 
ordd> + + 
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We need three more lemmas. 

Lemma 2. — Let A and B be finite non-empty subsets of G, and let H C G be a 
finite non-zero subgroup of G, satisfying 

(\A + H\-\A\) + (\B + H\-\B\)<\H\. 

Then H = P(A + B). 

Proof — We choose c = a-hb E A + B and h E H and we prove that c-h h £ A + B. 
We have: 

I (a + H) fi A\ + |(6 + H) n B\ < I (A + H)C\A\ + \{B + H)f\B\< \H\, 

hence 

\{a + H)f)A\ + \{b + H)r\B\ > \H\, 

\H fl (A - a)I + \h - H fl (B - b)\ > \H\, 

and therefore there exist h„, hh £ H such that 

ha = h~ hbl ha= a' - a, hb = bf - b (a' E A, b' £ B). 

But then c + h — a + b + ha + hb = a' + b' EA + B which was to be proved. • 

Lemma 3. — Let A,BCG satisfy (*). Suppose that A + B is quasi-periodic, and 
write H = Q(A + B). Denote by a the canonical homomorphism a: G —> G/H, and 
set A\ = a A, B\ — oB. Then 

i) | A i + £ i | < | A i | + | J 3 i | - l ; 
ii) \AX+BX\ < \A + B\; 

iii) \A + B\ - 1 > (|Ai + Bx\ - 1)\H\. 

Proof — i) Suppose first that H = P(A + B). Obviously, \A + B\ < \A + H\ + 
\B + H\ - 1. But the left-hand side, as well as \A + H | and \B + if | , divides 
by \H\, so we also have |A 4- B | < |A + H| + |J5 + # | - |ff |. Eventually, 
\A + H\ = |Ai||jff|, |B + £T| = |Bi||Jff| and |A + B | = |AX + B1||H|. 

Now consider the situation, when H is a quasi-period, but not a true period 
of A + B. Then by Lemma 2, 

|A + J3| + 1 < |A| + |J?| < |A + JT| + |B + fZ"| - |H|, 

hence (since the right-hand side divides by \H\) we also have \A + B -\- H\ < 
\A + H\ + \B + H\ - and the proof finishes as in the case H = P(A + B). 

ii) Follows from iii). 
iii) If H = P(A + B)1 then 

|A + B | - 1 = |Ai + £ i | | # | - 1 > (|Ai + B i | - 1) |H|. 

If i f is not a true period of A 4- 2?, then A + 5 contains |Ai 4- J3i| — 1 full 
if-cosets, and at least one element in yet another il-coset, therefore \A 4- B\ > 
( 1 ^ + 5 x 1 - 1 ) 1 ^ 1 + 1 . 
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Lemma 4. — Let A-hB = c + H\ { 0 } and suppose that min{|A|, \B\} > 2, where 
A,B C G are subsets, H C G a subgroup, and c G G an element of G. Then \H\ > 4. 

Proof — We have: \H\-1 = |A+J3| > \A\ > 2, hence \H\ > 3. Suppose \H\ = 3, and 
so \A\ = \B\ = \A+B\ = 2. LetA = a + { 0 , d i } , B = 6 + { 0 , d 2 } . Then A+B = a + 6 + 
{ 0 , d i , d2, di + d2}, hence d2 = di, d\+d2 = 0, and H = { 0 } U {a-h6 — c, a + 6 + d — c } , 
where d = di = d2, 2d = 0. Therefore d = (a -b b -f d — c) — (a -f 6 — c) G H, which 
contradicts to | i f | = 3, 2d = 0. • 

3. Proof of the Main Theorem 

Denote Go = G, A0 — A, B0 = B and consider the following conditions: 

1) \A\ = \B\ = 1; 
2) \A\ = 1, |J3| > 1; 
3) \A\ > 1, |B | = 1; 

4) A + B = c + H \ { 0 } , where H is a subgroup, and c e G — an element of G; 
5) A + B is in true arithmetic progression. 

If all these conditions fail, then by Corollary 1 the sum AQ + Bo is quasi-periodic, 
and we put Hi = Q(A0 4- Bo), Gi = Go/Hi, denote by o~i the canonical homomor-
phism o"i: Go —> Gi and set = <7iAo, 2?i = CT\BQ, SO that A i , Bi satisfy (*) by 
Lemma 3, i) . Now check, whether some of the conditions l ) -5 ) is met with Gi,Ai,Bi 
substituted for G, A, B. If not, we continue the process by defining 

H2 = Q(A1 + B1), G2 = Gi/H2, 

o~2 : Gi —• G2, A>2 — &2 Ai, I?2 = a2B\ 

and so on. At each step we obtain a pair of subsets Ai,Bi Ç Gi, satisfying (*) 
and also \A{ -h Bi\ < + #¿-1 | (by Lemma 3, ii)). Eventually we obtain a pair 
Ak,Bk Ç Gk (ft > 0), which meets at least one of the conditions l ) - 5 ) . We write 
a = ak • * • o\ \ G - » Gfc (or (7 = idG in the case ft = 0) so that Ak = o\A, 2?fc = oB, 
and we write H = a~xH if the first condition met is 4), or H = kercr otherwise. We 
distinguish 5 cases according to the first condition satisfied. 

1) Here ft > 0 and Ak-i + Bk-i = c 4- iïfc, where c G G^-i (since Hk is a quasi-
period of Ak-i +Bfc_i) , therefore Afc_i Ç a + Hk, Bk-i Ç 6 + (a, 6 G G*_i) , 
whence A Ç a '+ i ï , B Ç {a1, b' G G) . We choose now Si = {a7}, S2 = { 6 ' } 
and observe, that by Lemma 3, iii) 

L4 + B I - 1 > ( | A i + B i | - l ) | H i | > . . . > 

> (\Ah-1+Bk-1\-l)\Hk-1\..-\H1\ = 

= ( |Jïft |- l) | jfffc_i| . .- |fri |> 

> 
1 
2 

|fffc||Hfc_i|.-.|Hi| = 
1 

2 
i m . 

2) Also here we may assume ft > 0, since otherwise the result is trivial if we choose 
Si = A, S2 — B, H = { 0 } . Furthermore, as in 1) we have A C a + H . We choose 
Si = { a } , and for S2 we choose the system of arbitrary representatives of all 
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