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THE MUMFORD CONJECTURE

[after Madsen and Weiss]

by Geoffrey POWELL

1. INTRODUCTION

The Mumford conjecture concerns the cohomology of the moduli space Mg of

smooth projective curves of genus g: Mumford constructed tautological classes κi, for

i > 1, in the Chow ring CHi(Mg) with rational coefficients, which yield a natural

morphism of algebras Q[κi]→ CH∗(M), in which CH∗(M) denotes the Chow ring of

the moduli spaces, stabilized with respect to the genus. The conjecture asserts that

the above morphism is an isomorphism [19, 8].

The conjecture can be reformulated in terms of the stable cohomology of the map-

ping class groups (or Teichmüller modular groups) Γg [5, 17]. The mapping class

group Γg is the discrete group of isotopy classes of orientation-preserving diffeomor-

phisms of a smooth, oriented surface of genus g. The group cohomology H∗(BΓg) of

the mapping class groups stabilizes in a given degree for sufficiently large genus. The

stable value identifies with the cohomology of the space BΓ∞, which is the homotopy

colimit of the system of classifying spaces BΓg,2 of the mapping class groups of curves

with two marked points, stabilized with respect to maps induced by group morphisms

Γg,2 → Γg+1,2.

The moduli space Mg can be constructed, as an analytic space, as the quotient

of the action of the group Γg upon Teichmüller space, Tg. Teichmüller space is con-

tractible and the action has finite isotopy groups, hence the Mumford conjecture

can be restated in terms of the Mumford-Morita-Miller characteristic classes [14, 16],

κi ∈ H
2i(BΓ∞; Q).

Conjecture 1.1. — The classes κi ∈ H
2i(BΓ∞; Q) induce an isomorphism of al-

gebras α̃ : Q[κi]→ H∗(BΓ∞; Q).
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The algebra H∗(BΓ∞; Q) has a Hopf algebra structure, induced by a multiplica-

tive structure of geometric origin on the classifying space BΓ∞. The classes κi are

primitive and non-trivial, thus the morphism α̃ is a monomorphism of Hopf algebras.

The space BΓ∞ has a structure which enriches the multiplicative structure; namely,

the space BΓ∞ has a perfect fundamental group, hence the Quillen plus construction

applies to yield a morphism BΓ∞ → BΓ+
∞, which induces an isomorphism in homol-

ogy and such that BΓ+
∞ has trivial fundamental group. Tillmann [24] showed that

the space Z×BΓ+
∞ is an infinite loop space, hence it represents the degree zero part

of a generalized cohomology theory; the identification of the associated cohomology

theory is a problem of stable homotopy theory.

The construction of the Mumford-Morita-Miller characteristic classes uses integra-

tion along the fibre of powers of the first Chern class of the orientation bundle of the

universal oriented surface bundle. This can be interpreted in terms of the Gysin mor-

phism, which is of topological origin, via the Pontrjagin-Thom construction. Madsen

and Tillmann [11] constructed a morphism of infinite loop spaces

α∞ : Z×BΓ+
∞ −→ Ω∞(CP∞

−1
)

which lifts the construction of α̃. The infinite loop space Ω∞(CP∞
−1

) is constructed

from the Thom spectrum which is associated to the complements of the canonical line

bundles on complex projective space.

The rational cohomology of the space Ω∞(CP∞
−1

) is isomorphic to the rational

cohomology of the space Z × BU , where BU denotes the classifying space of the

infinite unitary group. The cohomology algebra H∗(BU ; Q) is isomorphic to the

polynomial algebra Q[κi], where the classes κi can be taken to be Chern classes,

hence the Mumford conjecture is implied by the following result, which is referred to

as the generalized Mumford conjecture.

Theorem 1.2 ([12]). — The morphism α∞ : Z×BΓ+
∞ → Ω∞(CP∞

−1
) is a homotopy

equivalence.

The cohomology of the space Ω∞(CP∞
−1

) with coefficients in a finite field Fp

has been calculated [4], using techniques of algebraic topology. The above theorem

therefore yields a calculation of the stable cohomology of the mapping class groups

H∗(BΓ∞; Fp), for any prime p.

1.1. Methods of proof

Madsen and Weiss reformulate the generalized Mumford conjecture using certain

generalized bundle theories; these are local in nature and their classifying spaces can

be constructed from realization spaces associated to sheaves of sets. In particular,

they give an interpretation of a modification of the morphism α∞ introduced in [11]

as the realization of a morphism of sheaves.
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Let X denote the category of smooth manifolds, without boundary and with a

countable basis and consider sheaves of sets on X. There is a natural notion of

homotopy on the sections of a sheaf, termed concordance; if F is a sheaf and X is a

smooth manifold, then concordance is an equivalence relation on the sections F(X),

which is induced by elements of F(X × R), in the usual way. The set of equivalence

classes for the concordance relation is written as F [X ]. The contravariant functor

X 7→ F [X ] is represented on the homotopy category of topological spaces by a space

|F|; namely F [X ] ∼= [X, |F|], where the right hand side denotes homotopy classes of

morphisms of topological spaces. A morphism f : E → F of sheaves is defined to be

a weak equivalence if the induced morphism |f | : |E| → |F| is a weak equivalence(1)

between the representing spaces.

There are two principal techniques which are used to show that a morphism between

sheaves is a weak equivalence: to exhibit explicit concordances so as to obtain an

isomorphism of concordance classes or to use the relative surjectivity criterion of

Proposition A.7 to show that a morphism is a weak equivalence.

The classifying space BΓg classifies bundles with fibres which are closed oriented

surfaces, hence the source of the morphism α∞ is related to bundles of closed oriented

surfaces. This motivates consideration of the sheaf V with sections over X the set of

pairs (π, f), where π : E → X is a smooth submersion with 3-dimensional oriented

fibres and f : E → R is a smooth morphism such that (π, f) is a proper submersion.

Ehresmann’s fibration lemma implies that this is a bundle of smooth surfaces onX×R.

The definition of V can be weakened: let hV denote the sheaf with sections over

X the set of pairs (π, f̂), where π : E → X is as before and f̂ is a smooth section of

the fibrewise 1-jet bundle J1
π(E,R)→ E, subject to the condition that the morphism

(π, f) : E → X × R is a proper submersion, where f denotes the underlying smooth

map, f : E → R, of f̂ . There is a morphism of sheaves α : V → hV , induced by jet

prolongation, which induces a morphism of topological spaces |α| : |V| → |hV|, which

is related to the morphism α∞.

These definitions generalize; namely it is expedient to allow mild fibrewise sin-

gularities over X × R, by considering smooth sections of the fibrewise 2-jet bundle

J2
π(E,R)→ E and permitting fibrewise critical points which are of Morse type. This

gives sheaves W , hW , where W corresponds to the integrable situation, as above.

Similarly, there are sheavesWloc, hWloc which correspond to the local situation around

the singular sets and these sheaves form a commutative diagram

V //

j2π
��

W //

j2π
��

Wloc

j2π
��

hV // hW // hWloc.

(1)

(1)(induces an isomorphism on homotopy groups)
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The first main theorem of Vassiliev on the space of functions with moderate sin-

gularities is used to show the following Theorem, which motivates the strategy of

proof.

Theorem 1.3. — The morphism j2π :W → hW is a weak equivalence.

This result is used in conjunction with the following, which is proved using bordism

theory.

Theorem 1.4

(1) The morphism j2π :Wloc → hWloc is a weak equivalence.

(2) The sequence of representing spaces |hV| → |hW| → |hWloc| is a homotopy

fibre sequence(2) of infinite loop spaces.

(3) There is a homotopy equivalence |hV| ' Ω∞(CP∞
−1

).

Let F denote the homotopy fibre of |W| → |Wloc|, then it follows formally from

the homotopy invariance of the homotopy fibre construction that there is a homo-

topy equivalence F
'
→ |hV|. Standard methods of homotopy theory imply that the

generalized Mumford conjecture follows from:

Theorem 1.5. — There exists a morphism Z×BΓ∞ → F which induces an isomor-

phism in homology with integral coefficients.

The proof of this theorem involves replacing the singularities inherent in W by

ones in standard form and then stratifying by critical sheets; after stratification, the

concordance relation is imposed by a homotopical gluing construction, the homotopy

colimit over a suitable category. The proof of the theorem relies on foundational

results from homotopy theory together with the homological stability results of Harer;

in particular, the proof uses closed surfaces with boundary.

1.2. Approximations

Much of the material of [12] is developed for bundles of manifolds of arbitrary

dimension, d, and with a general notion of orientation, the Θ-orientation. For the

presentation of this text, the general notion of orientation has been suppressed and

the integer d is usually taken to be two.

To avoid set-theoretic difficulties, [12] uses the notion of graphic morphisms with

respect to a fixed set in the definitions of the sheaves which are considered; more-

over set-theoretic caveats are required in various proofs. All such details have been

suppressed in this text.

(2)A sequence of pointed spaces F → E → B is a homotopy fibre sequence if F is weakly equivalent

to the homotopy fibre of E → B. The homotopy fibre can be defined explicitly as the fibre product

E ×B PB, where PB → B is the path space fibration over B.
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2. MAPPING CLASS GROUPS

2.1. Orientation-preserving diffeomorphisms

Let F be a smooth, compact, oriented surface with boundary ∂F , then F is classi-

fied, up to diffeomorphism, by its genus g and the number b of boundary components;

write Fg,b for a representative of the diffeomorphism class.

The topological group of orientation-preserving diffeomorphisms of F which fix the

boundary is written Diff◦(F ; ∂F ) and Diff◦
e(F ; ∂F ) denotes the connected component

which contains the identity, so that there is a canonical monomorphism of topological

groups, Diff◦
e(F ; ∂F )→ Diff◦(F ; ∂F ).

Definition 2.1. — For g, b non-negative integers, the mapping class group Γg,b is

the discrete group of path components, Γg,b := π0(Diff◦(Fg,b; ∂Fg,b)).

Earle and Eells [2] proved that the topological group Diff◦
e(F ; ∂F ) is contractible,

for F a smooth, compact, oriented surface of genus g > 2.

Corollary 2.2. — For g > 2 an integer, there is a homotopy equivalence BΓg,b '

BDiff◦(Fg,b; ∂Fg,b). In particular, the classifying space BΓg,b classifies isomorphism

classes of oriented Fg,b-bundles.

There is a model for the classifying space BΓg,b constructed from Teichmüller

space, for strictly positive b. Let H(F ) denote the space of hyperbolic metrics on the

surface F with geodesic boundary such that each boundary circle has unit length.

The hyperbolic model for the moduli space of Riemann surfaces of topological type

F is given by

M(F ) := H(F )/Diff◦(F ; ∂F ).

Teichmüller space is defined as the quotient T (F ) := H(F )/Diff◦
e(F ; ∂F ).

Theorem 2.3 ([2, 3]). — Let F := Fg,b be a smooth, compact, oriented surface of

genus g > 1, with b boundary components. The following statements hold.

(1) The space H(F ) is contractible.

(2) The space T (F ) is contractible and homeomorphic to R6g−6+2b.

(3) If b > 0, the action of Γg,b on Teichmüller space T (F ) is free and BΓg,b '

M(F ).

(4) If b = 0, the action of Γg on Teichmüller space T (Fg,0) has finite isotropy

groups, hence there is a rational homotopy equivalence BΓg 'Q M(Fg,0).

In particular, the above establishes the relation between the moduli space of Rie-

mann surfacesM(F ) and the mapping class group.
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