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TRAVELLING GRAPHS FOR THE
FORCED MEAN CURVATURE MOTION
IN AN ARBITRARY SPACE DIMENSION

 R MONNEAU, J-M ROQUEJOFFRE
 V ROUSSIER-MICHON

Dedicated to Henri Berestycki

A. – We construct travelling wave graphs of the form z = −ct+ φ(x),
φ : x ∈ RN−1 7→ φ(x) ∈ R, N ≥ 2, solutions to the N -dimensional forced mean curvature mo-
tion Vn = −c0 + κ (c ≥ c0) with prescribed asymptotics. For any 1-homogeneous function φ∞,
viscosity solution to the eikonal equation |Dφ∞| =

√
(c/c0)2 − 1, we exhibit a smooth concave

solution to the forced mean curvature motion whose asymptotics is driven by φ∞. We also describe
φ∞ in terms of a probability measure on SN−2.

R. – Nous construisons des ondes progressives sous la forme de graphes z = −ct + φ(x),
φ : x ∈ RN−1 7→ φ(x) ∈ R, N ≥ 2, solutions du mouvement par courbure moyenne forcée
Vn = −c0+κ (c ≥ c0) en dimensionN d’espace et avec un comportement asymptotique prescrit. Pour
toute solution de viscosité φ∞, 1-homogène en espace, de l’équation eikonale |Dφ∞| =

√
(c/c0)2 − 1,

nous mettons en évidence une solution régulière et concave du mouvement par courbure moyenne
forcée dont le comportement asymptotique est donné parφ∞. Nous décrivons aussiφ∞ en terme d’une
mesure de probabilité sur la sphère SN−2.

1. Introduction

1.1. Setting of the problem

The question investigated here is the description of the travelling wave graph solutions to
the forced mean curvature motion in any dimensionN ≥ 2, that is written under the general
form

(1) Vn = −c0 + κ

where Vn is the normal velocity of the graph, κ its local mean curvature and c0 a given strictly
positive constant to be defined later. A graph satisfying (1) can be given by the equation

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
0012-9593/02/© 2013 Société Mathématique de France. Tous droits réservés



218 R. MONNEAU, J.-M. ROQUEJOFFRE AND V. ROUSSIER-MICHON

z = u(t, x) where u : (t, x) ∈ R+ × RN−1 7→ u(t, x) ∈ R is a solution to the parabolic
equation

(2)
ut√

1 + |Du|2
= −c0 + div

Å
Du√

1 + |Du|2

ã
, t > 0 , x ∈ RN−1.

Indeed, at any time t > 0 fixed, the outer normal to the subgraph {(x, z) ∈ RN−1 × R |
z ≤ u(t, x)} is given by

~n =
1√

1 + |Du|2

(
−Dxu

1

)
its normal velocity Vn by (0, ∂tu)T · ~n while its mean curvature by κ = − div(x,z) ~n, see [6].

A travelling wave to (2) is a solution of the form u(t, x) = −ct + φ(x) where
φ : x ∈ RN−1 7→ φ(x) ∈ R is the profile of the wave and c ≥ c0 is some given constant
standing for its speed. Thus φ satisfies the following elliptic equation

(3) − div

Ç
Dφ√

1 + |Dφ|2

å
+ c0 −

c√
1 + |Dφ|2

= 0 , x ∈ RN−1.

1.2. Connection with reaction diffusion equations

This work should provide us a better understanding of the multidimensional solutions to
the non linear scalar reaction diffusion equation

(4) ∂tv = ∆v + f(v) , t > 0 , (x, z) ∈ RN−1 × R

where v : (t, x, z) ∈ [0,+∞) × RN−1 × R 7→ v(t, x, z) ∈ R and, especially the case of
travelling waves in dimensionN . In the case of a “bistable” nonlinearity f , that is to say when
f is a continuously differentiable function on R satisfying

(i) f(0) = f(1) = 0

(ii) f ′(0) < 0 and f ′(1) < 0

(iii) there exists θ ∈ (0, 1) such that f(v) < 0 for v ∈ (0, θ), f(v) > 0 for v ∈ (θ, 1)

(iv)
∫ 1

0

f(v) dv > 0,

it is well-known [10] that there exists a one-dimensional travelling front v(t, z) = φ0(z+ c0t)

solution to (4) with N = 1. The speed c0 is unique and strictly positive by (iv) while the
profile φ0 is unique up to translations. This result defines the constant c0 > 0 that appears
in Equation (1).

In the caseN = 2, multidimensional solutions to (4) are well understood. Paper [7] proves
the existence of conical travelling waves solutions to (4), and paper [8] classifies all possible
bounded non constant travelling waves solutions under rather weak conditions at infinity. In
particular, it is proved in [8] that c ≥ c0 and, up to a shift in x ∈ R, either u is a planar front
φ0(±x cosα+ z sinα) with α = arcsin(c0/c) ∈ (0, π2 ] or u is the unique conical front found
in [7].

In higher dimensions, less is known. In [7], Hamel, Monneau and Roquejoffre or in [13],
Ninomiya and Taniguchi proved the existence of conical travelling waves with cylindrical
symmetry whose level sets are Lipschitz graphs moving away logarithmically from straight
cones. Some special, non cylindrically symmetric pyramidal-shaped solutions (see Taniguchi
[14] and references therein) are also known in any dimension N ≥ 3.
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Thus, in order to get a better understanding of the mechanisms at work, we further
the idea of bridging reaction-diffusion equations with geometric motions. In particular,
travelling wave graph solutions to the forced mean curvature motion go back to Fife [5]. He
proved (in a formal fashion) that reaction-diffusion travelling fronts propagate with normal
velocity

Vn = −c0 +
κ

t
+O

Å
1

t2

ã
, t� 1.

For a mathematically rigorous treatment of these ideas, we refer for instance to de Mottoni,
Schatzman [11]—small times, smooth solutions context—and Barles, Soner, Souganidis
[1]—arbitrary large times, viscosity solutions context.

1.3. Main results

Our Theorem 1.1 below states that, given a 1-homogeneous solution φ∞ to the eikonal
equation derived from (3) (i.e., the equation obtained by removing the curvature term)
there exists a smooth solution φ to the forced mean curvature motion Equation (3) whose
asymptotic behaviour is prescribed by φ∞. Here is the precise result.

Theorem 1.1 (Existence of solutions with prescribed asymptotics in dimension N )
Let N ∈ N \ {0, 1}, α ∈ (0, π2 ], c0 > 0 and c = c0/ sinα. Choose φ∞ a 1-homogeneous

viscosity solution to the eikonal equation

(5) |Dφ∞(x)| = cotα , x ∈ RN−1 .

Then there exists a smooth concave solution φ ∈ C∞(RN−1) to (3) such that

(6) φ(x) = φ∞(x) + o(|x|) as |x| → +∞.

This is the most possible general result. However, due to the possible complexity of a
solution to the eikonal Equation (5), it is useful to specialize our result to the particular case
of a solution with a finite number of facets.

Theorem 1.2 (Solutions with finite number of facets in dimension N )
Let N ∈ N \ {0, 1}, α ∈ (0, π2 ], c0 > 0 and c = c0/ sinα. Choose φ∗ a viscosity solution to

the eikonal Equation (5) given for any x ∈ RN−1 by

(7) φ∗(x) = inf
ν∈A

(−(cotα) x · ν + γν)

where A is a finite subset of cardinal k ∈ N∗ of the sphere SN−2 and γν are given real numbers.
Then there exists a unique smooth concave solution φ ∈ C∞(RN−1) to (3) such that

(8)


− 2 ln k

c0 sinα
≤ φ− φ∗ ≤ 0 , x ∈ RN−1

lim
l→+∞

sup
dist(x,E∞)≥l

|φ(x)− φ∗(x)| = 0

where E∞ is the set of edges defined as

E∞ = {x ∈ RN−1 |φ∞ is not C1 at x}

with the 1-homogeneous function

φ∞(x) = inf
ν∈A

(−(cotα) x · ν) .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



220 R. MONNEAU, J.-M. ROQUEJOFFRE AND V. ROUSSIER-MICHON

In space dimension N = 3, we obtain a more precise result by considering solutions
having a finite number of gradient jumps. Those solutions are still more complex than the
infimum of a finite number of affine forms. Here is the precise result.

Theorem 1.3 (Solutions with finite number of gradient jumps and N = 3)
Let α ∈ (0, π2 ], c0 > 0 and c = c0/ sinα. Choose φ∞ a 1-homogeneous viscosity solution to

the eikonal Equation (5) in dimension N = 3 with a finite number of singularities on S1. Then,
there exist

(1) a 2π-periodic continuous function ψ∞ : θ ∈ [0, 2π] 7→ ψ∞(θ) ∈ [− cotα, cotα] and a
finite number k ∈ N\ {0} of angles θ1 < · · · < θk in [0, 2π) such that

φ∞(r cos θ, r sin θ) = rψ∞(θ) , (r, θ) ∈ R+ × [0, 2π).

Moreover, for any i ∈ {1, . . . , k},
(a) Either ∀θ ∈ [θi, θi+1], ψ∞(θ) = −(cotα) and we set σi = 1.
(b) Or{
∀θ ∈

î
θi,

θi+θi+1

2

ó
, ψ∞(θ) = −(cotα) cos(θ − θi)

∀θ ∈
î
θi+θi+1

2 , θi+1

ó
, ψ∞(θ) = −(cotα) cos(θ − θi+1)

and we set σi = 0.

By convention, θk+1 = 2π + θ1 and σk+1 = σ1. If k ≥ 2, then σiσi+1 = 0 for any
i ∈ {1, ..., k}.

(2) a smooth concave function φ ∈ C∞(R2) solution to Equation (3) such that when |x| goes
to infinity

φ(x) = φ∗(x) +O(1)

where

(9) φ∗(x) = − 2

c0 sinα
ln

Å∫
S1

e
c0 cosα

2 x·ν dµ(ν)

ã
and µ is the non negative measure on S1 with finite mass determined by ψ∞ as follows:
We set µ =

∑k
i=1 µi where for any fixed λ0 > 0, we set

(a) If σi = 1, then µi = 1I(θi,θi+1) dθ + λ0(δθi + δθi+1
)

(with the exception for k = 1: µ1 = 1I(θ1,θ1+2π) dθ).
(b) If σi = 0, then µi = λ0(δθi + δθi+1

).

We plan to use our travelling graphs for the forced mean curvature motion exhibited in
Theorems 1.1 to 1.3 in order to construct multi-dimensional travelling fronts to the reaction
diffusion Equation (4); we plan to do it in a forthcoming paper.

That Equation (5) prescribes the asymptotic behaviour of (3) has nothing surprising:
let ε > 0 and denote by φε the scaled function

φε(x) = εφ
(x
ε

)
, x ∈ RN−1.

Since φ is a solution to (3), φε satisfies

−ε div

Ç
Dφε√

1 + |Dφε|2

å
+ c0 −

c√
1 + |Dφε|2

= 0 , x ∈ RN−1.

Let ε go to zero. If adequate estimates forφε are known, (a subsequence of) (φε)ε>0 converges
to a function φ∞ satisfying (5).
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