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COCYCLES OVER PARTIALLY HYPERBOLIC MAPS
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1. Partially hyperbolic diffeomorphisms

A diffeomorphism f : M → M on a compact manifold M is partially hyperbolic if
there exists a continuous, nontrivial Df -invariant splitting

TxM = Esx ⊕ Ecx ⊕ Eux , x ∈M

of the tangent bundle such that the derivative is a contraction along Es and an ex-
pansion along Eu, with uniform rates, and the behavior of Df along the center bundle
Ec is in between its behaviors along Es and Eu, again by a uniform factor. Partial hy-
perbolicity is a natural generalization of the notion of uniform hyperbolicity (Anosov
or even Axiom A, see [25]), that includes many interesting additional examples, most
notably: diffeomorphisms derived from Anosov through deformation by isotopy, many
affine maps on homogeneous spaces, certain skew-products over hyperbolic maps, and
time-1 maps of Anosov flows. Partial hyperbolicity is an open condition, so any C1

small perturbation of these examples is partially hyperbolic as well.
The stable and unstable bundles, Es and Eu, are uniquely integrable; that is, there

exist unique f -invariant foliations W s and W u tangent to Es and Eu, respectively,
at all points. The leaves of these foliations are Ck if the diffeomorphism is Ck, for any
1 ≤ k ≤ ∞, but the foliations are usually not transversely smooth. On the other hand,
if f is twice differentiable then each W s and W u is absolutely continuous, meaning
that its holonomy maps preserve the class of zero Lebesgue measure sets. These facts
go back to the pioneering work of Brin, Pesin [6] and Hirsch, Pugh, Shub [15] where
partial hyperbolicity and the closely related notion of normally hyperbolic foliations
were introduced.

In general, the center bundle Ec need not be integrable, and similarly for the center
stable bundle Ecs = Ec ⊕ Es and the center unstable bundle Ecu = Ec ⊕ Eu. We
call the diffeomorphism dynamically coherent if Ecs and Ecu are tangent to foliations
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W cs and W cu respectively. Then intersecting the leaves of W cs and W cu, one obtains
an integral foliation W c for the center bundle as well. As it turns out, dynamical
coherence does hold in many situations of interest.

Brin, Pesin [6] also introduced the notion of accessibility, which has played a central
role in recent developments. A partially hyperbolic diffeomorphism is called accessible
if any two points in the ambient manifold may be joined by an su-path, that is,
a piecewise smooth path such that every smooth subpath is contained in a single
leaf of W s or a single leaf of W u. More generally, the diffeomorphism is essentially
accessible if, given any two sets with positive volume, one can join some point of one
to some point of the other by an su-path.

Interest in partially hyperbolic systems was greatly renewed in the mid-nineties,
with two initial goals in mind. One goal was to characterize robust (or stable) tran-
sitivity, both in discrete time and continuous time. A dynamical system is transitive
if it possesses orbits that are dense in the whole ambient space. The best known
examples are all of the known constructions of Anosov diffeomorphisms (see [25]).
Actually, since Anosov maps form an open subset of all C1 diffeomorphisms, these
are also examples of robust transitivity. On the other hand, early constructions by
Shub [24] and Mañé [17] showed that diffeomorphisms can be robustly transitive
without being Anosov. Many other examples were found by Bonatti, Díaz [2] and
Bonatti, Viana [5]. A subsequent series of works started by Díaz, Pujals, Ures [10]
for diffeomorphisms, and Morales, Pacifico, Pujals [18] for flows, established that in
dimension three robustness implies partial hyperbolicity (where at least two of the
bundles in the partially hyperbolic splitting are non-trivial). In higher dimensions one
has to replace partial hyperbolicity by a related weaker condition called existence of
a dominated splitting. See [3, 5] and also [4, Chapter 7] and references therein.

Another goal, initiated by Grayson, Pugh, Shub [14], was to recover the original
attempt by Brin, Pesin [6] to prove that most partially hyperbolic, volume preserving
diffeomorphisms are actually ergodic. To this end, Pugh, Shub [20] proposed the
following pair of conjectures:

Conjecture 1. — Accessibility holds for an open and dense subset of C2 partially hy-
perbolic diffeomorphisms, volume preserving or not.

Conjecture 2. — A partially hyperbolic C2 volume preserving diffeomorphism with
the essential accessibility property is ergodic.

Concerning Conjecture 1, it was shown by Dolgopyat, Wilkinson [12] that acces-
sibility holds for a C1-open and dense subset of all partially hyperbolic diffeomor-
phisms, volume preserving or not. Moreover, Didier [11] proved that accessibility
is C1-open for systems with 1-dimensional center bundle. More recently, Rodriguez
Hertz, Rodriguez Hertz, Ures [23] verified the complete conjecture for conservative
systems whose center bundle is one-dimensional: accessibility is Cr-dense among Cr

partially hyperbolic diffeomorphisms, for any r ≥ 1. A version of this statement

ASTÉRISQUE 358



COCYCLES OVER PARTIALLY HYPERBOLIC MAPS 3

for non-conservative diffeomorphisms was obtained in [7]. It remains open whether
Cr-density still holds when dimEc > 1.

Partial versions of Conjecture 2 were obtained by Pugh, Shub [20, 21, 22], as-
suming dynamical coherence and an additional technical condition they called center
bunching. Roughly speaking, their notion of center bunching means that the diffeo-
morphism is close to being an isometry along center leaves. The best result to date on
Conjecture 2 is due to Burns, Wilkinson [8] who proved ergodicity for any accessible,
partially hyperbolic volume preserving diffeomorphism (not necessarily dynamically
coherent) which is not too far from being conformal along center leaves. Although
this property is also called center bunching, it is a lot milder than the one of Pugh,
Shub. In particular, it is automatic when Ec has dimension one. Thus, the previous
result contains as a corollary a complete proof of Conjecture 2 when the center bundle
is one-dimensional. This corollary was also observed in [23].

2. Cocycles

The problems considered in this volume are situated in the following context.
Let f : M →M be a diffeomorphism. We fix a (topological, Lie...) group H with iden-
tity element e and consider the set of all (continuous, Hölder continuous, smooth...)
functions φ : M → H. Such a function is called a cocycle, for reasons that are ex-
plained in the sequel. Cocycles are objects that can be composed along orbits of f ,
and indeed, by the cocycle generated by φ we often mean the sequence φn defined by

φn(x) =


φ(fn−1(x)) · · ·φ(f(x)) · φ(x) if n > 0,
φ−1(f−n(x)) · · ·φ−1(f−2(x)) · φ−1(f−1(x)) if n < 0,
e if n = 0.

An equivalent definition of a cocycle, and one that generalizes to actions of groups
other than Z, is the following. A 1-cocycle is a map α : Z ×M → H satisfying the
cocycle condition:

α(m+ n, x) = α(m, fn(x)) · α(n, x), ∀n,m ∈ Z, x ∈M.(1)

Setting φ(x) = α(1, x), we obtain from the cocycle condition that φn(x) = α(n, x),
thereby establishing the equivalence of the two notions.

There are several contexts in which cocycles arise immediately in smooth dynamics
and related topics, which we now discuss.

Abelian cocycles. — The cocycle φ is called abelian when the group H is abelian.
A fundamental example of an abelian cocycle is the Jacobian map Jac f : M → R∗
that measures the volume distortion of a diffeomorphism f : M →M on a Riemannian
manifold M :

Jac f(x) =
d(vol ◦f)

d vol
(x).
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The 1-cocycle generated by Jac f is α(n, x) = Jac fn(x); in this case the cocycle con-
dition amounts to the composition law for Radon-Nikodym derivatives. Usually this
cocycle is transformed to an additive cocycle by taking a logarithm: log Jac f : M → R.

Abelian cocycles appear more generally as potentials in thermodynamic formalism.
In this setup, one associates to each cocycle φ : M → R over a dynamical system
f : M →M one or more f -invariant probability measures µφ satisfying the variational
equation ∫

M

φdµφ + h(µφ) = sup
ν

Å∫
M

φd ν + h(ν)

ã
,

where the supremum on the right is taken over all f -invariant probability measures
ν, and h(ν) denotes the f -entropy of the measure ν. The functional

P (φ) = sup
ν

Å∫
M

φd ν + h(ν)

ã
,

called the pressure of φ, has the property that if

(2) φ− ψ = Φ ◦ f − Φ,

for some function Φ, then P (φ) = P (ψ). Hence the measure µφ depends only on the
equivalence equivalence class for the equivalence relation φ ∼ ψ if and only if (2)
holds. As we describe below, this equation can be viewed as a coboundary equation
in the appropriate cohomology theory.

Another place in which abelian cocycles appear, this time in the context of R-ac-
tions, is in time changes in flows. Suppose that ϕt is a flow. If γ : M → R, then the
function α : R×M → R defined by

α(t, x) =

∫ t

0

γ(ϕs(x)) ds

satisfies the cocycle condition:

α(s+ t, x) = α(s, ϕt(x)) + α(t, x),(3)

which is the natural analogue of (1) for R-actions. In general, if α : R×M → R is an
arbitrary function, then the map ψα : R×M →M given by

ψα(t, x) = ϕα(t,x)(x)

will define a flow on M if and only if α satisfies (3). Here too, one has a coboundary
equation which corresponds to (2) for flows:

(4) α(t, x)− β(t, x) =

∫ t

0

γ(ϕs(x)) ds.

One can check that if Equation (2) is satisfied for cocycles α and β and some real-
valued function γ, then the flows ϕα and ϕβ are time changes of one another.
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Linear cocycles. — By a linear cocycle we will mean a cocycle with values in a
matrix group. Such non-abelian cocycles also arise naturally, most notably as deriva-
tive cocycles. Suppose that f : M → M is a diffeomorphism of an n-manifold M . To
avoid technical issues, assume that the tangent bundle TM is trivial:

TM = M × Rd.

Then the derivative Df can be represented as a map Df : M → GL(d,R) which, by
the Chain Rule, satisfies the (non-abelian) cocycle condition:

Dxf
n+m = Dfm(x)f

n · Dxf
m.

(We remark that the case where TM is non-trivial can be handled with a slight
generalization of the notion of cocycle, using sections of an appropriate bundle.) The
group GL(d,R) can be replaced by other matrix groups, such as SL(d,R), Sp(d,R),
O(d), U(d), etc. Such group-valued cocycles arise naturally as diffeomorphism cocycles
that are volume preserving, symplectic, isometric, and so on, as well as in the study
of frame flows on Riemannian manifolds.

Somewhat further afield, linear cocycles play a key role in analyzing the spectrum
of the one-dimensional discrete Schrödinger operators. To any abelian cocycle φ over
an ergodic system f : M → M and any p ∈ M one can associate a one-dimensional
discrete Schrödinger operator H : `2(Z)→ `2(Z) defined by

H(x)n = xn + xn−1 − φ(fn(p))xn.

The properties of the SL(2,R)-valued cocycles defined by

AE(p) =

(
E − φ −1

1 0

)
for different choices of the parameter E ∈ R determine the spectral properties of the
operator H. For example, if this cocycle is uniformly hyperbolic for some value of E,
then E lies in the resolvent set of H.

3. The central problems

We briefly outline the main questions that are addressed in the two papers in this
volume.

Cohomological equation. — The cohomological (or coboundary) equation is

φ = Φ−1 · (Φ ◦ f).(5)

For abelian cocycles this is usually written:

φ = Φ ◦ f − Φ.(6)

If such a solution exists, then φ is called a coboundary. Coboundaries are in a natural
sense orthogonal to f -invariant functions: they are the image of the linear operator
φ 7→ φ ◦ f − φ, whereas the f -invariant functions are the kernel. This orthogonality

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013


