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SOME REGULARITIES AND SINGULARITIES APPEARING
IN THE STUDY OF POLYNOMIALS AND OPERATORS

by

Marc Chaperon & Santiago López de Medrano

Abstract. — We apply the viewpoint of singularity theory to the following problems:
how does the decomposition of a polynomial P as the product of polynomials behave
under perturbations of P? How do the eigenvalues, eigenspaces and more generally
invariant subspaces of an operator A behave under perturbations of A? We give a
characterization of the regular situations and describe completely the singular ones
in some moderately degenerate situations.

Résumé (Quelques regularités et singularités apparaissant dans l’étude des polynômes et des opé-
rateurs )

Nous appliquons le point de vue de la théorie des singularités aux deux problèmes
suivants : comment la décomposition d’un polynôme P comme produit de polynômes
se comporte-t-elle quand on perturbe P ? Comment les valeurs propres, vecteurs
propres et plus généralement sous-espaces invariants d’un opérateur A se comportent-
ils quand on perturbe A ? Nous caractérisons les situations régulières et décrivons
complètement celles qui sont singulières mais pas trop dégénérées.

Introduction

In the study of bifurcations of dynamical systems one has to deal frequently with the
following situation: as a parameter varies one considers the variation of an eigenvalue
or of the invariant line generated by the corresponding eigenvector of the linearization
of the dynamical system at a certain point. It often happens that those elements vary
smoothly with the parameter, which is known to be the case if the eigenvalue is simple.
But nevertheless the system undergoes a bifurcation if the eigenvalue crosses a certain
subset of the plane (the unit circle, the imaginary axis, etc.). A second, more complex,
situation happens when the eigenvalue becomes multiple, since then its variation with
the parameter ceases to be smooth. The same situations occur when instead of an
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invariant line one needs to consider an invariant subspace of dimension greater than
one.

During the years we have meditated on these questions and have arrived at various
forms of expressing the (essentially known) conditions for the smooth variation of
those elements (see for example [5, 4] for recent versions). One of those forms seems
especially suited for studying, in terms of singularities of mappings, the situations
where that variation ceases to be smooth. In this article we describe the simplest of
those singularities.

The results. — We begin by a study of the simplest singularities of the polynomial
multiplication map:

Mult : MP(n)×MP(m)→ MP(n+m)

where MP(n) will denote the space of monic polynomials of degree n over K, which
will be either the real or the complex field. The rank of this map at a point (f, g) can
be expressed in terms of the degree of the greatest common divisor gcd(f, g) so that
it is a local diffeomorphism precisely when this degree is 0, i.e. when the factors are
relatively prime. And we can describe completely the singularities of Mult when this
degree is 1 (Theorem 1). Then we proceed to study the higher corank singularities of
Mult; here our results are not as sharp, but we have a complete geometric description
of many cases and an algebraic description of the rest.

As a byproduct of Theorem 1 we give an interesting description of the classical
resultant of two polynomials and we obtain the relation between the singularities of
Mult we describe and the resultant set Res(f, g) = 0.

Then we apply Theorem 1 (and its corollary, Theorem 3, which generalizes it to
the multiplication of an arbitrary number of factors) to study the singularities of the
(monic) characteristic polynomial map

χ : M(n× n)→ MP(n)

where M(n× n) denotes the space of n× n matrices with entries in K. We will view
each M ∈ M(n × n) as a linear mapping Cn → Cn and always take into account all
its complex eigenvalues. We determine the matrices at which χ is a submersion and
give a description of its simplest singularities (Theorem 5).

All the above is used to study the singularities of the eigenvalues of operators. For
that, we introduce the set of all proper elements of a Banach space E over K to be
the space of triples consisting of a linear operator on E, an invariant line and the
corresponding eigenvalue:

Eig(E) := {(λ, L,A) ∈ K×P(E)× End(E) : A(L) ⊆ L and A|L = λ}.

Here P(E) denotes the projectivization of E and End(E) the space of continuous
linear endomorphisms of E. There is a natural projection Π : Eig(E) 7→ End(E) on
the third factor.

The basic fact here (Theorem 6) is that Eig(E) is a smooth object, actually an
analytic manifold modelled on End(E), provided with a projection Π onto End(E).
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Therefore it is a kind a resolution of all the singularities associated to eigenvalue
problems.

We show that, not surprisingly, Π is a local diffeomorphism precisely at those
points where λ is a simple eigenvalue of A. And we can describe completely the
singularities of Π when λ is a geometrically simple eigenvalue of A of finite multiplicity
(Theorem 8). In the finite dimensional case this means simply that it has only one
corresponding invariant line, while in infinite dimensions there are some technical
additional conditions. We also show that the mapping that forgets the invariant line
is regular (in this case an immersion) precisely when the eigenvalue is geometrically
simple, a fact that is useful in the proof of the singularity part of Theorem 8.

In section D, we generalize this to invariant subspaces of dimension greater than
one. In fact, this was the starting point of the whole story: in [2], we explained that
the theory of formal normal forms for dynamical systems is an easy consequence of
the Jordan decomposition of endomorphisms. Thinking about the generalization of
this approach to families, we came to the conclusion that each characteristic space
F0 of an endomorphism A0 of Cn must have the following stability property: every
nearby endomorphism A has a unique invariant subspace F (A) of the same dimension
as F0 = F (A0) and close to it, depending analytically on A. This is an easy result but
it is not so well-known(1), and in section D we consider (and extend) it in the spirit
of singularity theory.

The singularities. — The singularities found in Theorems 1, 8, 15, 16 are a certain
type of Morin singularities which we will call swallowtails:

The standard k–swallowtail is the map

SWk : Kk−1 → Kk−1

defined by

SWk(a1, . . . , ak−2, u) := (a1, . . . , ak−2, u
k + ak−2u

k−2 + · · ·+ a1u)

For us a k–swallowtail will be any map germ between two Banach spaces which is
diffeomorphic to the germ at 0 of a map of the form

SWk × Id : Kk−1 × E → Kk−1 × E

for some Banach space E.When K = C but E is real—a situation occurring whenever
a real polynomial or endomorphism has nonreal roots or eigenvalues—we call such a
map a complex swallowtail.

Interesting examples of k-swallowtails are the evaluation map

ev : MP(k)×K → MP(k)×K

(P, a) 7→
(
P, P (a)

)
and the mapping

(a1, . . . , ak−1, a) 7→ (aa1, a1 + aa2, a2 + aa3, . . . , ak−2 + aak−1, ak−1 + a)

(1) The finite dimensional case led us to Theorem 1. . .
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The second example shows that all swallowtails can be given by maps all of whose
coordinate functions are polynomials of degree at most 2, a fact that we have not seen
in the literature.

These examples, and some of their variants, will play an important role in the
proofs of the theorems.

The singularities in Theorem 5 will be k–swallowtail deformations, by which we
mean any map germ between two Banach spaces which is diffeomorphic to the germ
at 0 of a map

G : E × E′ → E

such that G(x, 0) is a k–swallowtail, where E,E′ are Banach spaces.
There are many k–swallowtail deformations between spaces of the same dimension,

so this term does not describe a precise singularity type. And though it is possible, in
principle, to describe them all, there remains to do so specifically for the singularities
of χ.

We will show by examples that in all cases the singularities that are not swallowtails
are more complicated than those one could expect from the classification results of
singularities of mappings.

We hope to give soon some applications of these results to bifurcation problems of
dynamical systems.

In the Appendices we recall the main properties of the singularities we will use in
the text and describe completely the main examples. We also provide an introduction
to the results on continuous linear maps between Banach spaces needed in the text,
referring to Rudin’s beautiful book [10] for more details about this magnificent theory.

Conversations with Sergey Antonyan, Shirley Bromberg, Lino Samaniego, Georges
Skandalis and Bernard Teissier were very helpful in the preparation of this work.

A. Singularities of Polynomial Multiplication

Polynomial multiplication defines a map

Mult : MP(n)×MP(m)→ MP(n+m)

We are interested in describing the regular points and the singularities of the map
Mult . We will denote by gcd(P,Q) the monic greatest common divisor of the monic
polynomials P and Q.

Theorem 1. — For (P0, Q0) in MP(n)×MP(m),

(i) The corank of the differential DMult(P0, Q0) is the degree of gcd(P0, Q0).

(ii) In particular, Mult is a local diffeomorphism at (P0, Q0) if and only if
gcd(P0, Q0) = 1.

(iii) The mapping Mult is a (k+ 1)–swallowtail at (P0, Q0) for some positive integer
k if, and only if, deg gcd(P0, Q0) = 1, the integer k being the maximum of the
multiplicities in P0 and Q0 of their common root.
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(iv) If K = R, the mapping Mult is a complex (k + 1)–swallowtail at (P0, Q0) for
some positive integer k if, and only if, gcd(P0, Q0) is an irreducible polynomial
of degree 2, the integer k being the maximum of the multiplicities in P0 and Q0

of their complex conjugate common roots(2).

Proof. — The tangent space of MP(n) at any point is the set of polynomials of degree
less that n. The derivative of Mult at (P0, Q0) is then given by

(P,Q) 7→ P0Q+ PQ0.

Therefore its image, being the set of multiples of gcd(P0, Q0) by polynomials of degree
less than n + m − deg gcd(P0, Q0), has this dimension. This proves (i) and therefore
(ii).

If gcd(P0, Q0) = x − α then x − α must divide one of P0, Q0 with multiplicity 1

and the other one with multiplicity k. By changing the variable in the polynomials
(which induces a diffeomorphism of MP(n)) we can assume α = 0.

Consider first the case P0 = x, Q0 = xk. Then Mult is given by

Mult
(
x+ a, xk +

k−1∑
i=0

aix
i
)

=
k+1∑
i=0

(ai−1 + aai)x
i

(putting ak = 1, ak+1 = a−1 = 0) or, in coordinates (a, ak−1, . . . , a0), by

Mult(a0, . . . , ak−1, a) = (aa0, a0 + aa1, a1 + aa2, . . . , ak−1 + a),

which is a (k + 1)–swallowtail by example 2 in Appendix A.
In general, let P0 = xP1, Q0 = xkQ1, where P1, Q1 are not divisible by x. Then,

setting m1 := m− k and n1 := n− 1, we have a commutative diagram:

MP(n) × MP(m) → MP(m+ n)

↑ ↑ ↑
MP(1)×MP(n1) × MP(k)×MP(m1) → MP(k + 1)×MP(m1 + n1)

where all maps are given by multiplication. By Theorem 1, the vertical arrows are local
diffeomorphisms at (x, P1), (xk, Q1) and (xk+1, P1Q1) respectively. The lower map is
the product of the multiplication MP(1)×MP(k)→ MP(k + 1), which we have just
seen to be a (k+1)–swallowtail at (x, xk), and the multiplication MP(n1)×MP(m1)→
MP(m1 + n1), a local diffeomorphism at (P1, Q1) b Theorem 1. Therefore the upper
multiplication map is diffeomorphic to the lower one, which is a (k + 1)–swallowtail.
This proves the “if” in (i). As for the “only if”, just notice that, when the degree of
gcd(P0, Q0) is greater than 1, the corank of DMult is greater than 1 and Mult cannot
be a swallowtail at that point. This proves (iii).

(2) Or, in other words, the greatest integer k such that gcd(P0, Q0)k divides P0 or Q0.
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