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HOLONOMY INVARIANCE: ROUGH REGULARITY AND
APPLICATIONS TO LYAPUNOV EXPONENTS

by

Artur Avila, Jimmy Santamaria & Marcelo Viana

Abstract. — Un cocycle lisse est un produit gauche qui agit par des difféomorphismes
dans les fibres. Si les exposants de Lyapounov extremaux du cocycle coincident alors
les fibres possèdent certaines structures qui sont invariantes, à la fois, par la dy-
namique et par un pseudo-groupe canonique de transformations d’holonomie. Nous
démontrons ce principe d’invariance pour les cocycles lisses au dessus des difféomor-
phismes conservatifs partiellement hyperboliques, et nous en donnons des applications
aux cocycles linéaires et aux dynamiques partiellement hyperboliques.

Résumé. — Skew-products that act by diffeomorphisms on the fibers are called smooth
cocycles. If the extremal Lyapunov exponents of a smooth cocycle coincide then the
fibers carry quite a lot of structure that is invariant under the dynamics and under
a canonical pseudo-group of holonomy maps. We state and prove this invariance
principle for cocycles over partially hyperbolic volume preserving diffeomorphisms. It
has several applications, e.g., to linear cocycles and to partially hyperbolic dynamics.

1. Introduction

Lyapunov exponents measure the asymptotic rates of contraction and expansion,
in different directions, of smooth dynamical systems such as diffeomorphisms, co-
cycles, or their continuous-time counterparts. These numbers are well defined on a
full measure subset of phase-space, relative to any finite invariant measure. Systems
whose Lyapunov exponents are distinct/non-vanishing exhibit a wealth of geometric
and dynamical structure (invariant laminations, entropy formula, abundance of peri-
odic orbits, dimension of invariant measures) on which one can build to describe their
evolution. The main theme we are interested in is that systems for which the Lya-
punov exponents are not distinct are also special, in that they satisfy a very strong
invariance principle. Thus, a detailed theory can be achieved also in this case, if only
using very different ingredients.
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In the special case of linear systems, the invariance principle can be traced back
to the classical results on random matrices by Furstenberg [12], Ledrappier [19], and
others. Moreover, it has been refined in more recent works by Bonatti, Gomez-Mont,
Viana [7], Bonatti, Viana [8], Viana [25] and Avila, Viana [1, 2]. An explicit and
much more general formulation, that applies to smooth (possibly non-linear) systems,
is proposed in Avila, Viana [3] and the present paper: while [3] deals with extensions
of hyperbolic transformations, here we handle the case when the base dynamics is just
partially hyperbolic and volume preserving. The two papers are contemporary and
closely related: in particular, Theorem A of [3] relies on a version of the invariance
principle proved in here, more precisely, Theorem B below.

As an illustration of the reach of our methods, let us state the following appli-
cation in the realm of partially hyperbolic dynamics (for details, see Remark 2.9).
Let f : M → M be a C2 partially hyperbolic, dynamically coherent, volume pre-
serving, accessible diffeomorphism satisfying a suitable center bunching condition. If
the center bundle Ec has dimension 2 and the center Lyapunov exponents coincide
almost everywhere then f admits
(a) either an invariant continuous field of directions r ⊂ Ec,
(b) or an invariant continuous field of pairs of directions r1 ∪ r2 ⊂ Ec,
(c) or an invariant continuous conformal structure on Ec.

Sometimes, one can exclude all three alternatives a priori. That is the case, for in-
stance, if f is known to have periodic points p and q that are, respectively, elliptic
and hyperbolic along the center bundle Ec, in the following sense: the center eigenval-
ues of p are neither real nor pure imaginary, and the center eigenvalues of q are real
and distinct. Then it follows that the center Lyapunov exponents are distinct and,
in particular, at least one is non-zero. If f is symplectic then both center Lyapunov
exponents are different from zero; compare Theorem A in [3].

Precise statements of our results, including the definitions of the objects involved,
will appear in the next section. Right now, let us observe that important applications
of the methods developed in here have been obtained by several authors: a Livšic
theory of partially hyperbolic diffeomorphism, by Wilkinson [27]; existence and prop-
erties of physical measures, by Viana, Yang [26]; construction of measures of maximal
entropy, by Hertz, Hertz, Tahzibi, Ures [22].

2. Preliminaries and statements

2.1. Partially hyperbolic diffeomorphisms. — Throughout the paper, unless
stated otherwise, f : M →M is a partially hyperbolic diffeomorphism on a compact
manifoldM and µ is a probability measure in the Lebesgue class ofM . In this section
we define these and other related notions. See [9, 15, 16, 24] for more information.

A diffeomorphism f : M → M of a compact manifold M is partially hyperbolic if
there exists a nontrivial splitting of the tangent bundle

(2.1) TM = Es ⊕ Ec ⊕ Eu

ASTÉRISQUE 358



HOLONOMY INVARIANCE 15

invariant under the derivative Df , a Riemannian metric ‖ · ‖ on M , and positive
continuous functions ν, ν̂, γ, γ̂ with ν, ν̂ < 1 and ν < γ < γ̂−1 < ν̂−1 such that, for
any unit vector v ∈ TpM ,

‖Df(p)v‖ < ν(p) if v ∈ Es(p),(2.2)

γ(p) <‖Df(p)v‖ < γ̂(p)
−1 if v ∈ Ec(p),(2.3)

ν̂(p)
−1

<‖Df(p)v‖ if v ∈ Eu(p).(2.4)

(Equivalently, one could ask these conditions for some iterate; see Gourmelon [14].)
All three subbundles Es, Ec, Eu are assumed to have positive dimension. However, in
some cases (cf. Remarks 3.12 and 4.2) one may let either dimEs = 0 or dimEu = 0.

We take M to be endowed with the distance dist associated to such a Riemannian
structure. The Lebesgue class is the measure class of the volume induced by this (or
any other) Riemannian metric on M . These notions extend to any submanifold of M ,
just considering the restriction of the Riemannian metric to the submanifold. We say
that f is volume preserving if it preserves some probability measure in the Lebesgue
class of M .

Suppose that f : M →M is partially hyperbolic. The stable and unstable bundles
Es and Eu are uniquely integrable and their integral manifolds form two transverse
continuous foliations W s and W u, whose leaves are immersed submanifolds of the
same class of differentiability as f . These foliations are referred to as the strong-stable
and strong-unstable foliations. They are invariant under f , in the sense that

f( W s
(x)) = W s

(f(x)) and f( W u
(x)) = W u

(f(x)),

where W s
(x) and W s

(x) denote the leaves of W s and W u, respectively, passing
through any x ∈M . These foliations are, usually, not transversely smooth: the holon-
omy maps between any pair of cross-sections are not even Lipschitz continuous, in
general, although they are always γ-Hölder continuous for some γ > 0. Moreover, if
f is C2 then these foliations are absolutely continuous, meaning that the holonomy
maps preserve the class of zero Lebesgue measure sets. Let us explain this key fact
more precisely.

Let d = dimM and F be a continuous foliation of M with k-dimensional smooth
leaves, 0 < k < d. Let F (p) be the leaf through a point p ∈ M and F (p,R) ⊂ F (p)

be the neighborhood of radius R > 0 around p, relative to the distance defined by the
Riemannian metric restricted to F (p). A foliation box for F at p is the image of an
embedding

Φ : F (p,R)× Rd−k →M

such that Φ(·, 0) = id, every Φ(·, y) is a diffeomorphism from F (p,R) to some sub-
set of a leaf of F (we call the image a horizontal slice), and these diffeomorphisms
vary continuously with y ∈ Rd−k. Foliation boxes exist at every p ∈ M , by defini-
tion of continuous foliation with smooth leaves. A cross-section to F is a smooth
codimension-k disk inside a foliation box that intersects each horizontal slice exactly
once, transversely and with angle uniformly bounded from zero.
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Then, for any pair of cross-sections Σ and Σ′, there is a well defined holonomy
map Σ→ Σ′, assigning to each x ∈ Σ the unique point of intersection of Σ′ with the
horizontal slice through x. The foliation is absolutely continuous if all these home-
omorphisms map zero Lebesgue measure sets to zero Lebesgue measure sets. That
holds, in particular, for the strong-stable and strong-unstable foliations of partially
hyperbolic C2 diffeomorphisms and, in fact, the Jacobians of all holonomy maps are
bounded by a uniform constant.

A measurable subset of M is s-saturated (or W s-saturated) if it is a union of
entire strong-stable leaves, u-saturated (or W u-saturated) if it is a union of entire
strong-unstable leaves, and bi-saturated if it is both s-saturated and u-saturated. We
say that f is accessible if ∅ and M are the only bi-saturated sets, and essentially
accessible if every bi-saturated set has either zero or full measure, relative to any
probability measure in the Lebesgue class. A measurable set X ⊂ M is essentially
s-saturated if there exists an s-saturated set Xs ⊂M such that X∆Xs has measure
zero, for any probability measure in the Lebesgue class. Essentially u-saturated sets
are defined analogously. Moreover, X is bi-essentially saturated if it is both essentially
s-saturated and essentially u-saturated.

Pugh, Shub conjectured in [20] that essential accessibility implies ergodicity, for a
C2 partially hyperbolic, volume preserving diffeomorphism. In [21] they showed that
this does hold under a few additional assumptions, called dynamical coherence and
center bunching. To date, the best result in this direction is due to Burns, Wilkin-
son [10], who proved the Pugh-Shub conjecture assuming only the following mild form
of center bunching:

Definition 2.1. — A C2 partially hyperbolic diffeomorphism is center bunched if the
functions ν, ν̂, γ, γ̂ in (2.2)–(2.4) may be chosen to satisfy

(2.5) ν < γγ̂ and ν̂ < γγ̂.

When the diffeomorphism is just C1+α, for some α > 0, the arguments of Burns,
Wilkinson [10] can still be carried out, as long as one assumes what they call strong
center bunching (see [10, Theorem 0.3]). All our results extend to this setting.

2.2. Fiber bundles. — In this paper we deal with a few different types of fiber
bundles over the manifold M . The more general type we consider are continuous fiber
bundles π : E → M modeled on some topological space N . By this we mean that E
is a topological space and there is a family of homeomorphisms (local charts)

(2.6) φU : U ×N → π−1(U),

indexed by the elements U of some finite open cover U of M , such that π ◦ φU is the
canonical projection U ×N → U for every U ∈ U. Then each φU,x : ξ 7→ φU (x, ξ) is
a homeomorphism between N and the fiber Ex = π−1(x).

An important role will be played by the class of fiber bundles with smooth fibers,
that is, continuous fiber bundles whose fibers are manifolds endowed with a contin-
uous Riemannian metric. More precisely, take N to be a Riemannian manifold, not
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necessarily complete, and assume that all coordinate changes φ−1
V ◦φU have the form

(2.7) φ−1
V ◦ φU : (U ∩ V )×N → (U ∩ V )×N, (x, ξ) 7→ (x, gx(ξ))

where:

(i) gx : N → N is a C1 diffeomorphism and the map x 7→ gx is continuous, relative
to the uniform C1 distance on Diff1(N) (the uniform C1 distance is defined
by distC1(gx, gy) = sup{|gx(ξ)− gy(ξ)|, ‖Dgx(ξ)−Dgy(ξ)‖ : ξ ∈ N});

(ii) the derivatives Dgx(ξ) are Dg−1
x (ξ) are uniformly continuous and uniformly

bounded in norm.

Endow each Ex with the manifold structure that makes φU,x a diffeomorphism.
Condition (i) ensures that this does not depend on the choice of U ∈ U containing x.
Moreover, consider on each Ex the Riemannian metric γx =

∑
U∈ U ρU (x)γU,x, where

γU,x is the Riemannian metric transported from N by the diffeomorphism φU,x and
{ρU : U ∈ U} is a partition of unit subordinate to U. It is clear that γx depends
continuously on x. Condition (ii) ensures that different choices of the partition of unit
give rise to Riemannian metrics γx that differ by a bounded factor only.

Restricting even further, we call π : E→ M a continuous vector bundle of dimen-
sion d ≥ 1 if N = Kd, with K = R or K = C, and every gx is a linear isomorphism,
depending continuously on x and such that ‖g±1

x ‖ are uniformly bounded. Then each
fiber Ex is isomorphic to Kd and is equipped with a scalar product (and, hence, a
norm) which is canonical up to a bounded factor.

We also need to consider more regular vector bundles. Given r ∈ {0, 1, . . . , k, . . .}
and α ∈ [0, 1], we say that π : E → M is a Cr,α vector bundle if, for any U , V ∈ U
with non-empty intersection, the map

(2.8) U ∩ V → GL(d,K), x 7→ gx

is of class Cr,α, that is, it is r times differentiable and the derivative of order r is
α-Hölder continuous.

2.3. Linear cocycles. — Let π : V → M be a continuous vector bundle of di-
mension d ≥ 1. A linear cocycle over f : M → M is a continuous transformation
F : V → V satisfying π◦F = f ◦π and acting by linear isomorphisms Fx : V x → V f(x)

on the fibers. By Furstenberg, Kesten [13], the extremal Lyapunov exponents

λ+(F, x) = lim
n→∞

1

n
log ‖Fnx ‖ and λ−(F, x) = lim

n→∞

1

n
log ‖(Fnx )−1‖−1

exist at µ-almost every x ∈ M , relative to any f -invariant probability measure µ.
If (f, µ) is ergodic then they are constant on a full µ-measure set. It is clear that
λ−(F, x) ≤ λ+(F, x) whenever they are defined. We study conditions under which
these two numbers coincide.

Suppose that π : V →M is a Cr,α vector bundle, for some fixed r and α, and f is
also of class Cr,α (this is contained in our standing assumptions if r + α ≤ 2). Then
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