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INFINITE DIMENSIONAL OSCILLATORY INTEGRALS
WITH POLYNOMIAL PHASE FUNCTION AND THE TRACE

FORMULA FOR THE HEAT SEMIGROUP

by
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Abstract. — Infinite dimensional oscillatory integrals with a polynomially growing
phase function with a small parameter ε ∈ R+ are studied by means of an analytic
continuation technique, as well as their asymptotic expansion in the limit ε ↓ 0. The
results are applied to the study of the semiclassical behavior of the trace of the heat
semigroup with a polynomial potential.

Résumé (Intégrales oscillantes en dimension infinie avec une phase polynomiale et formule de la
trace pour le semigroupe de la chaleur)

Nous étudions les intégrales oscillantes en dimension infinie avec une phase de
croissance polynomiale à petit paramètre ε ∈ R+ au moyen d’une technique de pro-
longement analytique. Nous donnons aussi leur développement asymptotique en ε
lorsque ε ↓ 0. Nous présentons une application de ces résultats à l’étude du compor-
tement semiclassique de la trace du noyau de la chaleur avec un potentiel polynomial.

1. Introduction

Oscillatory integrals on finite dimensional Hilbert spaces, i.e. expressions of the
form

(1)
∫

Rn
e−

i
εΦ(x)g(x)dx,
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(where Φ : Rn → R is the phase function and ε ∈ R+ a real positive parameter) are a
classical topic of investigation, having several applications, e.g. in electromagnetism,
optics and acoustics. They are part of the general theory of Fourier integral operators
[27, 35]. Particularly interesting is the study of the asymptotic behavior of these
integrals in the limit ε ↓ 0. The generalization of the definition of oscillatory integrals
to the case where the integration is performed on an infinite dimensional space, in
particular a space of continuous functions, presents a particular interest in connection
with applications to quantum theory such as the mathematical realization of Feyn-
man path integrals [1, 7] (see also, e.g. [26, 36] and references therein; applications
include—besides quantum mechanics—quantum field theory and low dimensional ge-
ometry, see, e.g. [10] and references therein). In the case where the integration is
performed on such spaces and on general real separable Hilbert spaces, the theory
was for a long time restricted to oscillatory integrals with phase functions Φ which
can be written as sums of a quadratic form and a bounded function belonging to the
class of Fourier transforms of complex measures. In [8, 9] these results have been gen-
eralized to phase functions with quartic polynomial growth. In this paper we consider
a generalization of the oscillatory integral (1) and its infinite dimensional analogue,
in the case where the imaginary unity i in the exponent is replaced by a complex
parameter s ∈ C+ ≡ {z ∈ C : Re(z) ≥ 0}:

(2) I(s) ≡
∫
e−

s
εΦ(x)g(x)dx.

Strictly speaking I(s) has an oscillatory behavior only for s being a pure imaginary
number. By generalizing the results of [8], we prove (in section 2) a representation
formula which allows us to compute an infinite dimensional oscillatory integral of
the form (2), with a phase function Φ having an arbitrary even polynomial growth,
in terms of a Gaussian integral. In the non degenerate case (i.e. when the Hessian
of the phase function is non degenerate), we compute (in section 3) the asymptotic
expansion of the integral as ε ↓ 0 in powers of ε. In the degenerate case the situation
is more involved. In section 4 we handle in detail a particular example and apply
this result to the study of the asymptotic behavior of the trace of the heat semigroup
Tr[e−

t
~H ], t > 0, in the case where H is the essentially self-adjoint operator on C∞0 ≡

C∞0 (Rd) ⊂ L2(Rd) given on the functions φ ∈ C∞0 by

(3) Hφ(x) =
(
− ~2

2
∆x + V (x)

)
φ(x),

where ~ > 0 and V is a polynomially growing potential of the form V (x) = |x|2N ,
x ∈ Rd, N ∈ N. This corresponds to exhibiting the detailed behavior of Tr[e−

t
~H ],

t > 0, “near the classical limit". Indeed H can be interpreted as a Schrödinger Hamil-
tonian (in which case ~ is the reduced Planck’s constant), and consequently e−

t
~H
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as a Schrödinger semigroup with imaginary time, i.e. the heat semigroup. In recent
years a particular interest has been devoted to the study of the trace of the heat semi-
group and of the corresponding Schrödinger group e−

it
~ H , t ∈ R, (related to the heat

semigroup by analytic continuation in the “time variable" t) and their asymptotics in
the “semiclassical limit ~ ↓ 0" (see, e.g., [46], [1, 4, 12] and also [16, 17, 18, 20]
for related problems). In particular one is interested in the proof of a trace formula
of Gutzwiller’s type, relating the asymptotics of the trace of the Schrödinger group
and the spectrum of the quantum mechanical energy operator H with the classical
periodic orbits of the system. Gutzwiller’s heuristic trace formula, which is a basis
of the theory of quantum chaotic systems, is the quantum mechanical analogue of
Selberg’s trace formula, relating the spectrum of the Laplace-Beltrami operator on
manifolds with constant negative curvature with the periodic geodesics (see, e.g., [25]
and [3, 4, 12]).
In the case where the potential V is the sum of an harmonic oscillator part and
a bounded perturbation V0 that is the Fourier transform of a complex (bounded
variation) measure on Rd, rigorous results on the asymptotics of the trace of the
Schrödinger group and the heat semigroup have been obtained in [4, 12] by means of
an infinite dimensional version of the stationary phase method for infinite dimensional
oscillatory integrals (see [7] for a review of this topic).
The paper is organized as follows. In section 2 we give the definition and the main
results on infinite dimensional oscillatory integrals of the form (2) with a polynomial
phase function Φ, in section 3 we study the asymptotic expansion of the integral in
the case where the origin is a non degenerate critical point of Φ, while in section 4
we study a degenerate case and apply these results to the asymptotics of Tr[e−

t
~H ],

t > 0, as ~ ↓ 0.

2. Infinite dimensional oscillatory integrals

The present section is devoted to the study of the oscillatory integrals with complex
parameter s. In the following we shall denote by ( H , 〈 , 〉, ‖ ‖) a real separable infinite
dimensional Hilbert space, s will be a complex number such that Re(s) ≥ 0, g : H → C
a Borel function.
Let us consider the generalization of the oscillatory integral (1) to the case (2) where
the imaginary unity i in the exponent is replaced by a complex parameter s ∈ C+ ≡
{z ∈ C : Re(z) ≥ 0}:

(4) I(s) ≡
∫

Rn
e−

s
εΦ(x)g(x)dx.
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In the case where s is a pure imaginary number, by exploiting the oscillatory behavior
of the integrand, the oscillatory integral (4) can still be defined as an improper Rie-
mann integral even if the (continuous) function g is not summable. In the case where
the phase function Φ is a quadratic form, the integral (4) is called Fresnel integral.
We propose here for the general case (4) a modification of the Hörmander’s defini-
tion [27], also considered in [5, 23] in connection to the generalization to the infinite
dimensional case. This modification is as follows:

Definition 2.1. — Let f : Rn → C be a Borel function, s ∈ C+ a complex parameter.
Let S be a subset of the space of the Schwartz test functions S(Rn). If for each φ ∈ S
such that φ(0) = 1 the integrals

Iδ(f, φ) :=

∫
Rn

(2πs−1)−n/2e−
s
2 |x|

2

f(x)φ(δx)dx

exist for all δ > 0 and limδ→0 Iδ(f, φ) exist and is independent of φ, then this limit
is called the Fresnel integral of f with parameter s (with respect to the space S of
regularizing functions) and denoted by

(5) F s(f) ≡
∫̃ s

Rn
e−

s
2 |x|

2

f(x)dx.

By an adaptation of the definition of infinite dimensional oscillatory integrals given
in [23] it is possible to define the oscillatory integral with parameter s on the Hilbert
space H , namely

(6) I(s) =
›∫ s

H
e−

s
2‖x‖

2

g(x)dx

as the limit of a sequence of (suitably normalized) finite dimensional approximations
[12].

Definition 2.2. — A Borel measurable function f : H → C is called F s integrable
if for each sequence {Pn}n∈N of projectors onto n-dimensional subspaces of H , such
that Pn ≤ Pn+1 and Pn → I strongly as n→∞ (I being the identity operator in H ),
the finite dimensional approximations of the Fresnel integral of f , with parameter s,

(7) F sPn(f) ≡
fl∫ s

Pn H
e−

s
2‖Pnx‖

2

f(Pnx)d(Pnx)

exist (in the sense of definition 2.1) and the limit limn→∞ F sPn(g) exists and is inde-
pendent of the sequence {Pn}.
In this case the limit is called the infinite dimensional Fresnel integral of f with
parameter s and is denoted by ›∫ s

H
e−

s
2‖x‖

2

f(x)dx.
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f is then said to be integrable (in the sense of Fresnel integrals with parameter s).

The description of the largest class of functions which are integrable in this sense
is an open problem, even in the finite dimensional case. Clearly it depends on the
class S of the regularizations. The common choice is S ≡ S(Rn), [5, 23]. In this case
[5, 7, 23] the space of integrable functions includes (in finite as well as in infinite
dimensions) the Fresnel class F ( H ), that is the set of functions f : H → C that are
Fourier transforms of complex bounded variation measures on H :

f(x) =

∫
H
ei〈y,x〉dµf (y) ≡ µ̂f (x), x ∈ H

sup
∑
i

|µf (Ei)| <∞,

where the supremum is taken over all sequences {Ei} of pairwise disjoint Borel subsets
of H , such that ∪iEi = H .
In fact for any f ∈ F ( H ) it is possible to prove a Parseval type equality that allows to
compute the infinite dimensional oscillatory integral of f (with purely imaginary pa-
rameter s) in terms of an absolutely convergent integral with respect to the associated
complex-valued measure µf [5, 23]. Indeed given a self-adjoint trace-class operator
B : H → H , such that (I − B) is invertible, a function f ∈ F ( H ), f = µ̂f and a
positive parameter ~ ∈ R+, it is possible to prove that the function e−

i
2~ 〈x,Bx〉f(x) is

Fresnel integrable and the corresponding Fresnel integral with parameter s = −i/~ is
given by

(8)
‡∫ −i/~

H
e
i
2~‖x‖

2

e−
i
2~ 〈x,Bx〉ei〈x,y〉f(x)dx

= (det(I −B))−1/2

∫
H
e−

i~
2 〈α+y,(I−B)−1(α+y)〉µf (dα)

where det(I − B) = |det(I − B)|e−πi Ind (I−B) is the Fredholm determinant of the
operator (I − B), |det(I − B)| its absolute value and Ind((I − B)) is the number of
negative eigenvalues of the operator (I −B), counted with their multiplicities.

Let us also recall, for later use, a known result on infinite dimensional oscillatory
integrals.

Let H be a Hilbert space with norm | · | and scalar product (·, ·). Let also ‖ · ‖ be
an equivalent norm on H with scalar product denoted by 〈·, ·〉. Let us denote the new
Hilbert space by H̃ . Let us assume moreover that

〈x1, x2〉 = (x1, x2) + (x1, Tx2), x1, x2 ∈ H̃

‖x‖2 = |x|2 + (x, Tx), x ∈ H̃ ,
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