HOMOGENEOUS COMMUTING VECTOR FIELDS ON \mathbb{C}^{2}

$b y$

Alcides Lins Neto

Abstract

In the main result of this paper we give a method to construct all pairs of homogeneous commuting vector fields on \mathbb{C}^{2} of the same degree $d \geq 2$ (Theorem 1). As an application, we classify, up to linear transformations of \mathbb{C}^{2}, all pairs of commuting homogeneous vector fields on \mathbb{C}^{2}, when $d=2$ and $d=3$ (corollaries 1 and 2). We obtain also necessary conditions in the cases of quasi-homogeneous vector fields and when the degrees are different (theorem 2).

Résumé (Champs de vecteurs homogènes commutants dans \mathbb{C}^{2}). - Dans le résultat principal de ce papier on donne une méthode de construction de tous les paires de champs de vecteurs homogènes de même degré $d \geq 2$ qui commutent (théorème 1). Comme application, on classifie les paires de champs de vecteurs homogènes commutantes dans \mathbb{C}^{2} de degrés $d=2$ et $d=3$ (corollaires 1 et 2). Nous obtenons aussi des conditions nécessaires dans les cas quasi-homogènes et quand les degrés sont différents (théorème 2).

1. Introduction

A. Guillot in his thesis and in [3], gave a non-trivial example of a pair of commuting homogeneous vector fields of degree two on \mathbb{C}^{3}. The example is non-trivial in the sense that it cannot be reduced to two vector fields in separated variables, like in the pair $X:=P(x, y) \partial_{x}+Q(x, y) \partial_{y}$ and $Y:=R(z) \partial_{z}$. This suggested me the problem of classification of pairs of polynomial commuting vector fields on \mathbb{C}^{n}. This problem, in this generality, seems very difficult, even for $n=2$. Even the restricted problem of classification of pairs of commuting vector fields, homogeneous of degree d, seems very difficult for $n \geq 3$ and $d \geq 2$ (see problem 3). However, for $n=2$ and $d \geq 2$ it is possible to give a complete classification, as we will see in this paper.

2010 Mathematics Subject Classification. - 37C10, 37F75.
Key words and phrases. - Vector fields, commuting, homogeneous.
This research was partially supported by Pronex.

Let X and Y be two homogeneous commuting vector fields on \mathbb{C}^{2}, where $\operatorname{dg}(X)=k$ and $d g(Y)=\ell$, and $R=x \partial_{x}+y \partial_{y}$ be the radial vector field.

Definition 1.1. - We will say that X and Y are colinear if $X \wedge Y=0$. In this case, we will use the notation $X / / Y$. When $d g(X)=d g(Y)$, we will consider the 1-parameter family $\left(Z_{\lambda}\right)_{\lambda \in \mathbb{P}^{1}}$ given by $Z_{\lambda}=X+\lambda . Y$ if $\lambda \in \mathbb{C}$ and $Z_{\infty}=Y$. It will be called the pencil generated by X and Y. The pencil will be called trivial, if $Y=\lambda . X$ for some $\lambda \in \mathbb{C}$. Otherwise, it will be called non-trivial.

From now on, we will set:

$$
\left\{\begin{array}{l}
X \wedge Y=f \partial_{x} \wedge \partial_{y} \tag{1}\\
R \wedge X=g \partial_{x} \wedge \partial_{y} \\
R \wedge Y=h \partial_{x} \wedge \partial_{y}
\end{array}\right.
$$

Since $d g(X)=k$ and $d g(Y)=\ell$, the polynomials f, g and h are homogeneous and $d g(f)=k+\ell, d g(g)=k+1, d g(h)=\ell+1$. Moreover, $f \not \equiv 0$ iff X and Y are non-colinear.

Our main result concerns the case where $k=\ell \geq 2$. In this case, if $g, h \not \equiv 0$, we will consider the meromorphic function $\phi=g / h$ as a holomorphic function $\phi: \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$:

$$
\phi[x: y]=\frac{g(x, y)}{h(x, y)}
$$

Theorem 1. - Let $\left(Z_{\lambda}\right)_{\lambda}$ be a non-trivial pencil of homogeneous commuting vector fields of degree $d \geq 2$ on \mathbb{C}^{2}. Let X and Y be two generators of the pencil and f, g, h and ϕ be as before. If the pencil is colinear then $X=\alpha . R$ and $Y=\beta . R$, where α and β are homogeneous polynomials of degree $d-1$. If the pencil is non-colinear then:
(a) $f, g, h \not \equiv 0$.
(b) f / g (resp. f / h) is a non-constant meromorphic first integral of X (resp. Y).
(c) Let s be the (topological) degree of $\phi: \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$. Then $1 \leq s \leq d-1$.
(d) The decompositions of f, g and h into irreducible linear factors are of the form:

$$
\left\{\begin{array}{l}
f=\Pi_{j=1}^{r} f_{j}^{2 k_{j}+m_{j}} \tag{2}\\
g=\Pi_{j=1}^{r} f_{j}^{k_{j}} \cdot \Pi_{i=1}^{s} g_{i} \\
h=\Pi_{j=1}^{r} f_{j}^{k_{j}} \cdot \Pi_{i=1}^{s} h_{i}
\end{array}\right.
$$

where $s+\sum_{j=1}^{r} k_{j}=d+1$ and $\sum_{j=1}^{r} m_{j}=2 s-2$. Moreover, we can choose the generators X and Y in such a way that $g_{1}, \ldots, g_{s}, h_{1}, \ldots, h_{s}$ are two by two relatively prime.
(e) Considering the direction $\left(f_{j}=0\right) \subset \mathbb{C}^{2}$ as a point $p_{j} \in \mathbf{P}^{1}$, then

$$
\begin{equation*}
m_{j}=\operatorname{mult}\left(\phi, p_{j}\right)-1, j=1, \ldots, r \tag{3}
\end{equation*}
$$

where $\operatorname{mult}(\phi, p)$ denotes the ramification index of ϕ at $p \in \mathbf{P}^{1}$.
(f) The generators X and Y can be chosen as:

$$
\left\{\begin{array}{l}
X=g \cdot\left[\sum_{j=1}^{r}\left(k_{j}+m_{j}\right) \frac{1}{f_{j}}\left(f_{j x} \partial_{y}-f_{j y} \partial_{x}\right)-\sum_{i=1}^{s} \frac{1}{g_{i}}\left(g_{i x} \partial_{y}-g_{i y} \partial_{x}\right)\right] \tag{4}\\
Y=h \cdot\left[\sum_{j=1}^{r}\left(k_{j}+m_{j}\right) \frac{1}{f_{j}}\left(f_{j x} \partial_{y}-f_{j y} \partial_{x}\right)-\sum_{i=1}^{t} \frac{1}{h_{i}}\left(h_{i x} \partial_{y}-h_{i y} \partial_{x}\right)\right]
\end{array}\right.
$$

Conversely, given a non-constant map $\phi: \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$ of degree $s \geq 1$ and a divisor D on \mathbf{P}^{1} of the form

$$
\begin{equation*}
D=\sum_{p \in \mathbf{P}^{1}}(2 k(p)+\operatorname{mult}(\phi, p)-1) \cdot[p] \tag{5}
\end{equation*}
$$

where $k(p) \geq \min (1, \operatorname{mult}(\phi, p)-1)$ and $\sum_{p} k(p)<+\infty$, there exists a unique pencil $\left(Z_{\lambda}\right)_{\lambda}$ of homogeneous commuting vector fields of degree $d=\sum_{p} k(p)+s-1$ with generators X and Y given by (4), and the f_{j} 's, g_{i} 's and h_{i} 's given in the following way: let $\left\{p_{1}=\left[a_{1}: b_{1}\right], \ldots, p_{r}=\left[a_{r}: b_{r}\right]\right\}=\left\{p \in \mathbf{P}^{1} \mid 2 k(p)+\operatorname{mult}(\phi, p)-1>0\right\}$. Set $k_{j}=k\left(p_{j}\right), m_{j}=\operatorname{mult}\left(\phi, p_{j}\right)-1$ and $f_{j}(x, y)=a_{j} y-b_{j} x$. Set $\phi[x: y]=$ $G_{1}(x, y) / H_{1}(x, y)$, where G_{1} and H_{1} are homogeneous polynomials of degree s. Then the g_{i} 's and h_{i} 's are the linear factors of G_{1} and H_{1}, respectively.

Definition 1.2. - Let $X, Y, g=\Pi_{j=1}^{r} f_{j}^{k_{j}} . \Pi_{i=1}^{s} g_{i}$ and $h=\Pi_{j=1}^{r} f_{j}^{k_{j}} . \Pi_{i=1}^{s} h_{i}$ be as in theorem 1. We call $\left(f_{j}=0\right), j=1, \ldots, r$, the fixed directions of the pencil.

Given $\lambda \in \mathbb{C}$, the polynomial $g_{\lambda}=g+\lambda . h$ plays the same role for the vector field $Z_{\lambda}=X+\lambda . Y$ as g and h for X and Y. Its decomposition into irreducible factors is of the form

$$
g_{\lambda}=\Pi_{j=1}^{r} f_{j}^{k_{j}} \cdot \Pi_{i=1}^{s} g_{i, \lambda} .
$$

Definition 1.3. - The directions given by $\left(g_{i, \lambda}=0\right)$ are called the movable directions of the pencil.

In particular, the number s of movable directions coincides with the degree of the $\operatorname{map} \phi=g / h: \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$.

As an application of Theorem 1, we obtain the classification of the pencils of homogeneous commuting vector fields of degrees two and three.

Corollary 1. - Let $\left(Z_{\lambda}\right)_{\lambda}$ be a pencil of commuting homogeneous of degree two vector fields on \mathbb{C}^{2}. Then, after a linear change of variables on \mathbb{C}^{2}, the generators X and Y of the pencil can be written as:
(a) $X=g . R$ and $Y=h . R$, where g and h are homogeneous polynomials of degree one and $R=x . \partial_{x}+y . \partial_{y}$.
(b) $X=x^{2} \partial_{x}$ and $Y=y^{2} \partial_{y}$. In this case, the pencil has two fixed directions.
(c) $X=y^{2} \partial_{x}$ and $Y=2 x y \partial_{x}+y^{2} \partial_{y}$. In this case, the pencil has one fixed direction.

Corollary 2. - Let $\left(Z_{\lambda}\right)_{\lambda}$ be a pencil of commuting homogeneous of degree three vector fields on \mathbb{C}^{2}. Then, after a linear change of variables on \mathbb{C}^{2}, the generators X and Y of the pencil can be written as:
(a) $X=g . R$ and $Y=h . R$, where g and h are homogeneous polynomials of degree two and $R=x . \partial_{x}+y . \partial_{y}$.
(b) $X=y^{3} \partial_{x}$ and $Y=3 x y^{2} \partial_{x}+y^{3} \partial_{y}$. In this case, the pencil has one movable and one fixed direction.
(c) $X=x^{2} y \partial_{x}$ and $Y=x y^{2} \partial_{x}-y^{3} \partial_{y}$. In this case, the pencil has one movable and two fixed directions.
(d) $X=\left(2 x^{2} y+x^{3}\right) \partial_{x}-x^{2} y \partial_{y}$ and $Y=-x y^{2} \partial_{x}+\left(2 x y^{2}+y^{3}\right) \partial_{y}$. In this case, the pencil has one movable and three fixed directions.
(e) $X=x^{3} \partial_{x}$ and $Y=y^{3} \partial_{y}$. In this case, the pencil has two movable and two fixed directions.

Some of the preliminary results that we will use in the proof of Theorem 1 are also valid for quasi-homogeneous vector fields.

Definition 1.4. - Let S be a linear diagonalizable vector field on \mathbb{C}^{n} such that all eigenvalues of S are relatively prime natural numbers. We say that a holomorphic vector field $X \not \equiv 0$ is quasi-homogeneous with respect to S if $[S, X]=m X, m \in \mathbb{C}$.

It is not difficult to prove that, in this case, we have the following:
(I) $m \in \mathbb{N} \cup\{0\}$.
(II) X is a polynomial vector field.

Our next result concerns two commuting vector fields which are quasi-homogeneous with respect to the same linear vector field S. Let X and Y be two commuting vector fields on \mathbb{C}^{2}, quasi-homogeneous with respect to the same vector field S with eigenvalues $p, q \in \mathbb{N}$ (relatively prime), where $[S, X]=m X$ and $[S, Y]=n Y$. Since S is diagonalizable, after a linear change of variables, we can assume that $S=p x \partial_{x}+$ $q y \partial_{y}$. Set $X \wedge Y=f \partial_{x} \wedge \partial_{y}, S \wedge X=g \partial_{x} \wedge \partial_{y}$ and $S \wedge Y=h \partial_{x} \wedge \partial_{y}$. We will always assume that $X, Y \not \equiv 0$

Remark 1.1. - We would like to observe that f, g and h are quasi-homogeneous with respect to S, that is, we have $S(f)=(m+n+\operatorname{tr}(S)) f, S(g)=(m+\operatorname{tr}(S)) g$ and $S(h)=(n+\operatorname{tr}(S)) h$, where $\operatorname{tr}(S)=p+q$. It is known that in this case, any irreducible factor of f, g or h, is the equation of an orbit of S, that is, x, y or a polynomial of the form $y^{p}-c x^{q}$, where $c \neq 0$.

Theorem 2. - In the above situation, suppose that $f, h \not \equiv 0$ and $n \neq 0$. Then:
(a) $g \not \equiv 0$ and f / g is a non-constant meromorphic first integral of X.
(b) Suppose that $m, n \neq 0$. Then f, g and h satisfy the two equivalent relations below:

$$
\begin{align*}
& m n f^{2} d x \wedge d y=f d g \wedge d h+g d h \wedge d f+h d f \wedge d g \tag{6}\\
& (m-n) \frac{d f}{f}+n \frac{d h}{h}-m \frac{d g}{g}=\frac{m n f}{g h}(q y d x-p x d y) \tag{7}
\end{align*}
$$

(c) Suppose that $m, n \neq 0$. Then any irreducible factor of f divides g and h. Conversely, if $p=\operatorname{gcd}(g, h)$ then any irreducible factor of p divides f. Moreover, the decompositions of f, g and h into irreducible factors, are of the form

$$
\left\{\begin{array}{l}
f=\Pi_{j=1}^{r} f_{j}^{\ell_{j}} \tag{8}\\
g=\Pi_{j=1}^{r} f_{j}^{m_{j}} \cdot \Pi_{i=1}^{s} g_{i}^{a_{i}} \\
h=\Pi_{j=1}^{r} f_{j}^{n_{j}} \cdot \Pi_{i=1}^{t} h_{i}^{b_{i}}
\end{array}\right.
$$

where $r>0, m_{j}, n_{j}>0, \ell_{j} \geq m_{j}+n_{j}-1$, for all j, and any two polynomials in the set $\left\{f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{s}, h_{1}, \ldots, h_{t}\right\}$ are relatively prime.
(d) Suppose that f, g and h are as in (8). Then vector fields X and Y can be written as

$$
\left\{\begin{array}{l}
X=\frac{1}{n} g \cdot\left[\sum_{j=1}^{r}\left(\ell_{j}-m_{j}\right) \frac{1}{f_{j}}\left(f_{j x} \partial_{y}-f_{j y} \partial_{x}\right)-\sum_{i=1}^{s} a_{i} \frac{1}{g_{i}}\left(g_{i x} \partial_{y}-g_{i y} \partial_{x}\right)\right] \tag{9}\\
Y=\frac{1}{m} h \cdot\left[\sum_{j=1}^{r}\left(\ell_{j}-n_{j}\right) \frac{1}{f_{j}}\left(f_{j x} \partial_{y}-f_{j y} \partial_{x}\right)-\sum_{i=1}^{t} b_{i} \frac{1}{h_{i}}\left(h_{i x} \partial_{y}-h_{i y} \partial_{x}\right)\right]
\end{array}\right.
$$

As an application, we have the following result:
Corollary 3. - Let X and Y be germs of holomorphic commuting vector fields at $0 \in \mathbb{C}^{2}$. Let

$$
X=\sum_{j=d}^{\infty} X_{j}
$$

be the Taylor series of X at $0 \in \mathbb{C}^{2}$, where X_{j} is homogeneous of degree $j \geq d$. Assume that $d \geq 2$ and that the vector field X_{d} has no meromorphic first integral and that 0 is an isolated singularity of X_{d}. Then $Y=\lambda . X$, where $\lambda \in \mathbb{C}$.

We would like to recall a well-known criterion for a homogeneous vector field of degree d on \mathbb{C}^{2}, say X_{d}, to have a meromorphic first integral (see [1]). Since the radial vector field $R=x \partial_{x}+y \partial_{y}$ has the meromorphic first integral y / x, we can assume that $R \wedge X_{d}=g \partial_{x} \wedge \partial_{y} \not \equiv 0$. Let $\omega=i_{X_{d}}(d x \wedge d y)$, where i denotes the interior product. Then the form $\omega_{1}=\omega / g$ is closed. In this case, if $g=\Pi_{j=1}^{r} g_{j}^{k_{j}}$ is the decomposition of g into linear irreducible factors, then we have

$$
\omega_{1}=\sum_{j=1}^{r} \lambda_{j} \frac{d g_{j}}{g_{j}}+d\left(h / g_{1}^{k_{1}-1} \cdots g_{r}^{k_{r}-1}\right)
$$

where $\lambda_{j} \in \mathbb{C}$, for all $1 \leq j \leq r$ and h is homogeneous of degree $d+1-r=$ $d g\left(X_{d}\right)+1-r=d g\left(g / g_{1} \cdots g_{r}\right)$. In this case, X_{d} has a meromorphic first integral if, and only if, either $\lambda_{1}=\cdots=\lambda_{r}=0$, or $\lambda_{j} \neq 0$ for some $j \in\{1, \ldots, r\}, h \equiv 0$ and $\left[\lambda_{1}: \cdots: \lambda_{r}\right]=\left[m_{1}: \cdots: m_{r}\right]$, where $m_{1}, \ldots, m_{r} \in \mathbb{Z}$. In particular, we obtain that the set of homogeneous vector fields of degree $d \geq 1$ with a meromorphic first integral is a countable union of Zariski closed sets.

Let us state some natural problems related to the above results.
Problem 1. - Classify the pencils of commuting homogeneous vector fields of degree $d \geq 2$ on $\mathbb{C}^{n}, n \geq 3$.

