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Abstract. — A projective structure on a compact Riemann surface C of genus g is
given by an atlas with transition functions in PGL(2,C). Equivalently, a projective
structure is given by a P1-bundle over C equipped with a section σ and a foliation
F which is both transversal to the P1-fibers and the section σ. From this latter
geometric bundle picture, we survey on classical problems and results on projective
structures. By the way, we will recall some basic facts about P1-bundles. We will give
a complete description of projective (actually affine) structures on the torus with an
explicit versal family of foliated bundle picture.

Résumé (Structures projectives et fibrés projectifs sur les surfaces de Riemann compactes)
Une structure projective sur une surface de Riemann C de genre g est donnée par

un atlas dont les applications de transition sont à valeurs dans PGL(2,C). De manière
équivalente, une structure projective est donnée par un fibré en P1 sur C équipé d’une
section σ et d’un feuilletage F transverse à la fois aux fibres P1 et à la section σ. À
partir de cette dernière description géométrique, nous survolons quelques problèmes et
résultats classiques sur les structures projectives. Nous rappelons quelques propriétés
de base sur les fibrés en P1. Nous donnons une description complète des structures
projectives (qui sont en fait affines) sur le tore avec une famille verselle explicite de
fibrés feuilletés.
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1. Projective structures

1.1. Definition and examples. — Denote by Σg the orientable compact real sur-
face of genus g. A projective structure on Σg is given by an atlas {(Ui, fi)} of coordi-
nate charts (local homeomorphisms) fi : Ui → P1 such that the transition functions
fi = ϕij ◦ fj are restrictions of Moebius transformations ϕij ∈ PGL(2,C).
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Figure 1. Projective atlas

There is a unique maximal atlas defining the projective structure above, obtained
from the previous one by adding all charts {(Ui, ϕ◦fi)} when ϕ runs over PGL(2,C).

A projective structure induces a complex structure on Σg, just by pulling-back
that of P1 by the projective charts. We will denote by C the corresponding Riemann
surface (complex curve).

Example 1.1 (The Universal cover). — Let C be a compact Riemann surface having
genus g and consider its universal cover π : U → C. By the Riemann Mapping
Theorem, we can assume that U is either the Riemann sphere P1, or the complex plane
C or the unit disk ∆ depending wether g = 0, 1 or ≥ 2. We inherit a representation
of the fundamental group ρ : π1(C)→ Aut(U) whose image Λ is actually a subgroup
of PGL(2,C). All along the paper, by abuse of notation, we will identify elements
γ ∈ π1(C) with their image ρ(γ) ∈ PGL(2,C). The atlas defined on C by all local
determinations of π−1 : C 99K P1 defines a projective structure on C compatible with
the complex one. Indeed, any two determinations of π−1 differ by left composition
with an element of Λ.

We thus see that any complex structure on Σg is subjacent to a projective one. In
fact, for g ≥ 1, we will see that there are many projective structures compatible to a
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given complex one (see Theorem 1.2). We will refer to the projective structure above
as the canonical projective structure of the Riemann surface C: it does not depend on
the choice of the uniformization of U . We now give other examples.

Example 1.2 (Quotients by Kleinian groups). — Let Λ ⊂ PGL(2,C) be a subgroup act-
ing properly, freely and discontinuously on some connected open subset U ⊂ P1. Then,
the quotient map π : U → C := U/Λ induces a projective structure on the quotient
C, likely as in Example 1.1. There are many such examples where U is neither a disk,
nor the plane. For instance, quasi-Fuchsian groups are obtained as image of small per-
turbations of the representation ρ of Example 1.1; following [35], such perturbations
keep acting discontinuously on some quasi-disk (a topological disk whose boundary
is a Jordan curve in P1).

Example 1.3 (Schottky groups). — Pick 2g disjoint discs ∆−1 , . . . ,∆
−
g and ∆+

1 , . . . ,∆
+
g

in P1, g ≥ 1. For i = 1, . . . , n, let ϕi ∈ PGL(2,C) be a loxodromic map sending the
disc ∆−i onto the complement P1 −∆+

i .
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Figure 2. Schottky groups

The group Λ ⊂ PGL(2,C) generated by ϕ1, . . . , ϕg acts properly, freely, and dis-
continuously on the complement U of some closed set contained inside the disks (a
Cantor set whenever g ≥ 2). The fundamental domain of this action on U is given
by the complement of the disks and the quotient C = U/Λ is obtained by gluing
together the boundaries of ∆+

i and ∆−i by means of ϕi, i = 1, . . . , g. Therefore, C
is a compact Riemann surface of genus g. This picture is clearly stable under small
deformation of the generators ϕi and we thus obtain a complex 3g − 3 dimensional
family of projective structures on the genus g surface Σg (we have divided here by
the action of PGL(2,C) by conjugacy).
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1.2. Developping map and monodromy representation. — Given a projec-
tive atlas and starting from any initial coordinate chart (U0, f0), one can extend it
analytically along any path γ starting from p0 ∈ U0.

Indeed, after covering γ by finitely many projective coordinate charts, say (U0, f0),
(U1, f1), ... ,(Un, fn), one can modify them step by step in the following way. First
of all, since f0 = ϕ01 ◦ f1 on U0 ∩ U1, one can replace the chart f1 by f̃1 := ϕ01 ◦ f1
which is well-defined on U1, extending f0. Next, we replace f2 by f̃2 := ϕ01 ◦ ϕ12 ◦ f2
which, on U1 ∩ U2, coincide with f̃1. Step by step, we finally arrive at the chart
f̃n := ϕ01 ◦ · · · ◦ϕn−1 n ◦ fn which, by construction, is the analytic continuation of f0
along γ.

Therefore, the local chart (U0, f0) extends (after lifting on the universal covering)
as a global submersion on the universal cover

f : U → P1

which is called the developping map of the projective structure. The developping
map is moreover holomorphic with respect to the complex structure subjacent to the
projective one. By construction, the monodromy of f along loops takes the form

(1) f(γ.u) = ϕγ ◦ f, ϕγ ∈ PGL(2,C) ∀γ ∈ π1(Σg, p0)

(u is the coordinate on U and γ.u, the canonical action of π1(Σg, p0) on U). In fact,
ϕγ is the composition of all transition maps ϕi,j encoutered along γ for a given finite
covering of projective charts: with notations above, setting (Un, fn) = (U0, f0), we
have ϕγ = ϕ01 ◦ · · ·◦ϕn−1 n. It turns out that ϕγ only depends on the homotopy class
of γ and we inherit a monodromy representation

(2) ρ : π1(Σg, p0)→ PGL(2,C) ; γ 7→ ϕγ .

The image Λ of ρ will be called monodromy group. The developping map f is defined
by the projective structure up to the choice of the initial chart (U0, f0) above: it
is unique up to left composition ϕ ◦ f , ϕ ∈ PGL(2,C). Therefore, the monodromy
representation is defined by the projective structure up to conjugacy: the monodromy
of ϕ ◦ f is γ 7→ ϕ ◦ ϕγ ◦ ϕ−1.

Conversely, any global submersion f : U → P1 on the universal covering π : U → Σg
satisfying (1) is the developping map of a unique projective structure on Σg. We note
that condition (1) forces the map γ → ϕγ to be a morphism.

Example 1.4. — The developping map of the canonical projective structure (see ex-
ample 1.1) is the inclusion map U ↪→ P1 of the universal cover of C. More generally,
when the projective structure is induced by a quotient map π : U → C = U/Λ like in
example 1.2, then the developping map f is the universal cover Ũ → U of U and the
monodromy group is Λ. In example 1.3, the open set U is not simply connected (the
complement of a Cantor set) and the developping map is a non trivial covering. Thus
the corresponding projective structure is not the canonical one. Similarly, the devel-
opping map of a quasi-Fuchsian group is the uniformization map of the corresponding
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quasi-disk and is not trivial; the projective structure is neither the canonical one, nor
of Schottky type.

Example 1.5 (The Sphere). — Given a projective structure of the Riemann sphere P1,
we see that the developping map f : P1 → P1 is uniform (no monodromy since π1(P1)

is trivial). Therefore, f is a global holomorphic submersion (once we have fixed the
complex structure) and thus f ∈ PGL(2,C). Consequently, the projective structure
is the canonical one and it is the unique projective structure on P1.

For similar reason, we remark that the monodromy group of a projective structure
on a surface of genus g ≥ 1 is never trivial.

Example 1.6 (The Torus). — Let Λ = Z+τZ be a lattice in C, τ ∈ H, and consider the
elliptic curve C := C/Λ. The monodromy of a projective structure on C is abelian;
therefore, after conjugacy, it is in one of the following abelian groups:

– the linear group {ϕ(z) = az ; a ∈ C∗},
– the translation group {ϕ(z) = z + b ; b ∈ C},
– the finite abelian dihedral group generated by −z and 1/z.

The canonical projective structure on C has translation monodromy group Λ. On the
other hand, for any c ∈ C∗ the map

(3) fc : C→ P1 ; u 7→ exp(c.u)

is the developping map of a projective structure on C whose monodromy is linear,
given by

(4) fc(u+ 1) = ec · f(u) and fc(u+ τ) = ecτ · f(u).

We inherit a 1-parameter family of projective structures parametrized by c ∈ C∗ (note
that f0 ≡ 1 is not a submersion). We will see latter that this list is exhaustive. In
particular, all projective structures on the torus are actually affine (transition maps
in the affine group).

The projective structures listed in example 1.6 are actually affine structures: the
developping map takes values in C with affine monodromy.

Theorem 1.1 (Gunning [12]). — All projective structures on the elliptic curve C/(Z +

τZ), are actually affine and listed in example 1.6 above. There is no projective struc-
ture having affine monodromy on surfaces Σg of genus g ≥ 2.

In particular, the dihedral group is not the holonomy group of a projective structure
on the torus.

Partial proof. — Here, we only prove that the list of example 1.6 exhausts all affine
structures on compact Riemann surfaces. In example 1.7, we will see that there are
no other projective structure on tori than the affine ones.
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