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by

Emmanuel Paul

À José-Manuel, pour ses 60 ans

Abstract. — We give geometric and algorithmic criterions in order to have a proper
Galois envelope for a germ of quasi-homogeneous foliation in an ambient space of di-
mension two. We recall this notion recently introduced by B. Malgrange, and describe
the Galois envelope of a group of germs of analytic diffeomorphisms. The geometric
criterions are obtained from transverse analytic invariants, whereas the algorithmic
ones make use of formal normal forms.
Résumé (L’enveloppe galoisienne d’un germe de feuilletage : le cas quasi-homogène)

Nous donnons des critères géométriques et algorithmiques pour qu’un feuilletage
quasi-homogène en dimension deux possède une enveloppe galoisienne propre. Nous
rappelons cette notion récemment introduite par B. Malgrange et nous décrivons
l’enveloppe galoisienne d’un groupe de germes de difféomorphismes analytiques. Les
critères géométriques sont obtenus à partir d’invariants analytiques transverses, tan-
dis que les critères algorithmiques utilisent les formes normales.

Introduction

There are several notions of integrability for a system of differential equations.
Most of them are related to the existence of a sufficient number of first integrals for
the solutions of the system. These definitions differ each other on the additional prop-
erties required for this family of invariants functions. We can separate them into two
types:
— conditions between the first integrals: one may ask commutativity conditions for
the Poisson bracket, or relax such a condition;
— conditions on the nature of these functions: rational, meromorphic or multivalued
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functions in some “reasonable” class of transcendency.
The main methods for proving non integrability (analytical methods, Ziglin method
or Morales-Ramis method) are based on the linearization of the system around a par-
ticular solution. Therefore they only deliver sufficient criterions on non integrability,
using for the last mentioned method linear differential Galois theory.

In order to investigate the second type of condition, and –in the future– to get
necessary and sufficient conditions for integrability, we have to consider the system
in the whole, which suggests to consider a non linear differential Galois theory. The
first attempts in this direction was done by J. Drach and E. Vessiot. More recently,
B. Malgrange introduced in [12] (see also the introductive version [13]) a “Galois
envelope” for any dynamical system, namely the smallest D-groupoid which contains
the solutions of the system. Roughly speaking, a D-groupoid is a system of partial
differential equations whose local solutions satisfy groupoid conditions outside an
analytic codimension one set. They are not strict Lie groupoid, in order to deal with
singular systems. As a matter of introduction to this notion, we shall describe in the
first section the Galois envelope of a group of germs of analytic diffeomorphisms at
the origin of C.

Each D-groupoid admits a D-algebra obtained by the linearization of its equations
along the identity solutions. The local solutions of this linear differential system are
stable under the Lie bracket outside of a codimension one analytic set. The Galois
envelope of a singular analytic foliation F is the smallest D-groupoid Gal( F ) whose
D-algebra contains the germs of tangent vector fields to F . It is a proper one if it
doesn’t coincide with the whole groupoid Aut( F ) obtained by writing the equations
of invariance of the foliation under a local diffeomorphism. In this case –which is not
the general case–, its solutions satisfy an additional differential relation, and we shall
say that the foliation is Galois reducible.

For a local codimension one singular foliation defined by a holomorphic one-form
ω, this reducibility property is equivalent to the existence of a Godbillon-Vey sequence
of finite length for ω (at most three): there exists a finite sequence of meromorphic
one forms ω0, ω1, and ω2 such that ω0 is an equation of the foliation and

dω0 = ω0 ∧ ω1, dω1 = ω0 ∧ ω2, dω2 = ω1 ∧ ω2.

This fact was described in a manuscript of B. Malgrange [14], and then has been
extensively proved by G. Casale in [5] with some different arguments. In particular,
the transverse rank of Gal F (i.e. the order of its transverse local expression) is also
the minimal lenght of a Godbillon-Vey sequence for F . Finally, G. Casale proved in [2]
that this Godbillon-Vey condition is also equivalent to the existence of first integrals
for the foliation with a particular type of transcendency which belongs to a Darboux
or Liouville or Riccati type differential extension, according to the transverse rank of
the Galois envelope. These different points of view on the Galois reducibility admit a
generalization for higher codimension foliations: see [6] for the Painlevé 1 foliation.
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In the present paper we shall only deal with codimension one foliations in ambi-
ent spaces of dimension two. Therefore, we expect the existence of at most one first
integral, and we only have to discuss the second type of integrability condition: the
existence of such a first integral in a given class of transcendency. The previous dis-
cussion allows us to reformulate the integrability problem as following: give necessary
and sufficient criterions for the Galois reducibility of a germ of codimension one fo-
liation. We present an answer to this problem in the following context: F is defined
by a vector field X = Xh + · · · where the “initial” hamiltonian vector field

Xh =
∂h

∂y

∂

∂x
− ∂h

∂x

∂

∂y

is quasi-homogeneous with to respect to R = p1x
∂
∂x +p2y

∂
∂y (p1, p2 positive integers):

R(h) = δh, δ = degR(h). The dots means terms of higher quasihomogeneous degree.
We furthermore require that h has an isolated singularity (with Milnor number µ)
and that X still keep invariant the analytic set h = 0. Therefore, X is a logarithmic
vector field for the polar set h = 0, and we have:

X = aXh + bR, a ∈ O2, b ∈ O2, a(0) = 1

with degR(bR) > degR(Xh). The restriction to this class of foliation is motivated by
the two following reasons:
— the desingularization of these foliations by blowing up’s is “simple”: it is similar to
the one of the quasi-homogeneous function h: the exceptional divisor is only a chain
of projective lines and all the pull-back of the irreducible components of h –excepted
the axis if they appear in h– meet the same “principal” projective line C.
— in this class of foliations, we have at our disposal formal normal forms which give
us complete formal invariants: see [21].

This will allow us to give two different types of criterions for the Galois reducibility
of F : a geometric one which is related to the holonomy of the principal component
C of the desingularized foliation, and an algorithmic one which directly holds on the
normalized formal equation of the foliation. For the first one, let us denote Hol( F ) the
holonomy group of the principal component C for the desingularized foliation. This
is an analytic invariant of F (in fact, this “transverse invariant” is also a complete
invariant in this quasi-homogeneous context: see [8]). We prove in theorem (2.4) the
following result :

Theorem 1. The Galois groupoid of the germ of quasi-homogeneous foliation F
is a proper one if and only if the Galois envelope of Hol( F ) is a proper one.

This theorem reduces the initial problem to the determination of the Galois enve-
lope of a subgroup G of Diff(C,0), which is described in the first section (theorem 1.8).
The main argument in the proof of this theorem is an extension of the equation which
define the Galois envelope of Hol( F ) to the whole exceptional divisor. This is possi-
ble, since the elements of the holonomy group of C are solutions of this equation and
therefore keep it invariant. This proof suggests that even in non quasi-homogeneous
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cases, these criterions for the Galois reducibility will only depend on the transverse
structure of the foliation.

Theorem 1 is not an explicit criterion since in general, we can’t compute the in-
variant Hol( F ). In order to get an algorithmic criterion, we recall in section 3 the
formal normal forms for this class of foliations. Notice that in general these mod-
els are divergent models. The radial component of these normal forms make appear
a collection L(F ) of µ formal one-variable vector fields, and it turns out that this
collection (up to a commun conjugacy) is a complete invariant for the formal class
of F . It must be surprising to try to charaterize the Galois reducibility of F using
only formal invariants. Nevertheless, we can perform it according to the two following
facts:
— if a foliation is Galois reducible, then its formal normal form is a convergent one;
— if the foliation F is a “non exceptional” one (see [7]), then there exists a convergent
conjugacy between F and its model.
Clearly, for exceptional foliations, we need an additional condition on the analytic
class of F , which is not yet an algorithmic one. The central result of this work is the
following theorem which summarize theorem 3.5, corollary 3.7 and theorem 3.8:

Theorem 2. If the quasi-homogeneous foliation F is a non exceptional one, the
Galois envelope of F is proper if and only if the explicit invariant L( F ) generates a
finite dimensional Lie algebra. In this case, this one is always of dimension one, and
the foliation is at most Liouvillian.

If the quasi-homogeneous foliation F is an exceptional one, the Galois envelope
of F is proper if and only if the explicit invariant L( F ) is a finite dimensional Lie
algebra, and the analytic invariants of F are of “unitary” or “binary” type. In this
case, the foliation will be a Liouvillian one (for unitary invariants), or of Riccati
type, (for binary invariants).

We shall recall in the first section the definition of unitary or binary invariants
which is a terminology introduced by J. Ecalle. The first part of the theorem is an
extension of a result of F. Loray and R. Meziani for nilpotent singularities [11], while
the second one is an extension of a theorem of G. Casale for reduced singularities
[5]. Notice that in the local context, the Galois reducible foliations which are not
Liouvillian are very rare.

Clearly, the relationship between the algorithmic invariant L( F ) and the geomet-
ric one Hol( F ) has a transcendental nature since the first one is directly obtained
from the differential equation whereas the second one is related to the solutions of
this equation. Nevertheless, for Galois reducible foliations we can describe this rela-
tionship: it reduces to the exponential map of the one-variable vector fields of L( F ).
In order to check this fact it is more convenient to consider an equivalent data to
Hol( F ): the relative holonomy of F with respect to its initial part defined by Xh (see
section 4).
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Finally, we conclude this paper with a list of open questions related to the present
results.

1. The Galois envelope of a subgroup of Diff(C,0)

Let ∆ be a disc around 0 in C. We first recall the list of all the D-groupoids on
∆ (see [14] and [3]). We denote (x, y, y1, y2, . . . , yk) the coordinates for the space of
k-jets of maps from ∆ to itself.

Theorem 1.1. — The differential ideal of a D-groupoid on ∆ is generated by a mero-
morphic equation of one of the five types:

1. D-groupoids of order zero: they are generated by an equation of the form: h(x)−
h(y) = 0 where h is a holomorphic function on ∆. We denote them: G0(h).

2. D-groupoids of order one: they are generated by an equation of the form:
η(y)(y1)n − η(x) = 0 where n is an integer, and η a meromorphic function on
∆. We denote them Gn1 (η).

3. D-groupoids of order two: they are generated by an equation of the form: µ(y)y1+
y2
y1
− µ(x) = 0 where µ is meromorphic on ∆. We denote them G2(µ).

4. D-groupoids of order three: they are generated by an equation of the form:
ν(y)y1

2 + 2y3y1 − 3
Ä
y2
y1

ä2
− ν(x) = 0 where ν is meromorphic on ∆. We denote

them G3(ν).
5. The D-groupoid of infinite order G∞ defined by the trivial equation 0 = 0, whose

solutions are the whole sheaf Aut(∆).

The Galois envelope of a subgroup G of Diff(C,0) is the smallest D-groupoid in the
previous list which admits all the elements g of G as solutions. Clearly, the existence
of a proper Galois envelope of finite order k, only depends on the analytic class of
G. The Galois envelope for a monogeneous subgroup generated by g is the Galois
envelope of g itself, since all the iterates of g will also satisfy the same equation, by
composition or inversion stability. The Galois envelope Gal(g) of g is given by the two
following results, see B. Malgrange [14], and G. Casale ([3]). Let α = g′(0). If α is an
irrational number, then g is formally linearizable. We have:

Proposition 1.2. — A formally linearizable diffeomorphism has a proper Galois enve-
lope if and only if it is an analytically linearizable diffeomorphism. In this case, its
Galois envelope is a rank one D-groupoid.

If α is a rational number, g is a resonant diffeomorphism, and there exists an integer
q such that gq is tangent to the identity. The following lemma

Lemma 1.3 ([3]). — For all non vanishing integer q, Gal(g) = Gal(gq).

reduces the study to the case α = 1. Any diffeomorphism tangent to the identity to an
order k is conjugated via a formal series to a normal form gN which is the exponential
of the vector field xk+1

1+λxk
d
dx . Following the description of J. Martinet and J.P. Ramis,
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